Evaluate
\frac{835}{139}\approx 6.007194245
Factor
\frac{5 \cdot 167}{139} = 6\frac{1}{139} = 6.0071942446043165
Share
Copied to clipboard
\begin{array}{l}\phantom{139)}\phantom{1}\\139\overline{)835}\\\end{array}
Use the 1^{st} digit 8 from dividend 835
\begin{array}{l}\phantom{139)}0\phantom{2}\\139\overline{)835}\\\end{array}
Since 8 is less than 139, use the next digit 3 from dividend 835 and add 0 to the quotient
\begin{array}{l}\phantom{139)}0\phantom{3}\\139\overline{)835}\\\end{array}
Use the 2^{nd} digit 3 from dividend 835
\begin{array}{l}\phantom{139)}00\phantom{4}\\139\overline{)835}\\\end{array}
Since 83 is less than 139, use the next digit 5 from dividend 835 and add 0 to the quotient
\begin{array}{l}\phantom{139)}00\phantom{5}\\139\overline{)835}\\\end{array}
Use the 3^{rd} digit 5 from dividend 835
\begin{array}{l}\phantom{139)}006\phantom{6}\\139\overline{)835}\\\phantom{139)}\underline{\phantom{}834\phantom{}}\\\phantom{139)99}1\\\end{array}
Find closest multiple of 139 to 835. We see that 6 \times 139 = 834 is the nearest. Now subtract 834 from 835 to get reminder 1. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }1
Since 1 is less than 139, stop the division. The reminder is 1. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}