Evaluate
\frac{26}{25}=1.04
Factor
\frac{2 \cdot 13}{5 ^ {2}} = 1\frac{1}{25} = 1.04
Share
Copied to clipboard
\begin{array}{l}\phantom{8000)}\phantom{1}\\8000\overline{)8320}\\\end{array}
Use the 1^{st} digit 8 from dividend 8320
\begin{array}{l}\phantom{8000)}0\phantom{2}\\8000\overline{)8320}\\\end{array}
Since 8 is less than 8000, use the next digit 3 from dividend 8320 and add 0 to the quotient
\begin{array}{l}\phantom{8000)}0\phantom{3}\\8000\overline{)8320}\\\end{array}
Use the 2^{nd} digit 3 from dividend 8320
\begin{array}{l}\phantom{8000)}00\phantom{4}\\8000\overline{)8320}\\\end{array}
Since 83 is less than 8000, use the next digit 2 from dividend 8320 and add 0 to the quotient
\begin{array}{l}\phantom{8000)}00\phantom{5}\\8000\overline{)8320}\\\end{array}
Use the 3^{rd} digit 2 from dividend 8320
\begin{array}{l}\phantom{8000)}000\phantom{6}\\8000\overline{)8320}\\\end{array}
Since 832 is less than 8000, use the next digit 0 from dividend 8320 and add 0 to the quotient
\begin{array}{l}\phantom{8000)}000\phantom{7}\\8000\overline{)8320}\\\end{array}
Use the 4^{th} digit 0 from dividend 8320
\begin{array}{l}\phantom{8000)}0001\phantom{8}\\8000\overline{)8320}\\\phantom{8000)}\underline{\phantom{}8000\phantom{}}\\\phantom{8000)9}320\\\end{array}
Find closest multiple of 8000 to 8320. We see that 1 \times 8000 = 8000 is the nearest. Now subtract 8000 from 8320 to get reminder 320. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }320
Since 320 is less than 8000, stop the division. The reminder is 320. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}