Evaluate
\frac{16628\left(n+n_{2}\right)}{nn_{2}}
Expand
\frac{16628\left(n+n_{2}\right)}{nn_{2}}
Share
Copied to clipboard
8314\left(\frac{2}{n_{2}}+\frac{3\times 2}{n\times 3}\right)
Multiply \frac{3}{n} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
8314\left(\frac{2}{n_{2}}+\frac{2}{n}\right)
Cancel out 3 in both numerator and denominator.
8314\left(\frac{2n}{nn_{2}}+\frac{2n_{2}}{nn_{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n_{2} and n is nn_{2}. Multiply \frac{2}{n_{2}} times \frac{n}{n}. Multiply \frac{2}{n} times \frac{n_{2}}{n_{2}}.
8314\times \frac{2n+2n_{2}}{nn_{2}}
Since \frac{2n}{nn_{2}} and \frac{2n_{2}}{nn_{2}} have the same denominator, add them by adding their numerators.
\frac{8314\left(2n+2n_{2}\right)}{nn_{2}}
Express 8314\times \frac{2n+2n_{2}}{nn_{2}} as a single fraction.
\frac{16628n+16628n_{2}}{nn_{2}}
Use the distributive property to multiply 8314 by 2n+2n_{2}.
8314\left(\frac{2}{n_{2}}+\frac{3\times 2}{n\times 3}\right)
Multiply \frac{3}{n} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
8314\left(\frac{2}{n_{2}}+\frac{2}{n}\right)
Cancel out 3 in both numerator and denominator.
8314\left(\frac{2n}{nn_{2}}+\frac{2n_{2}}{nn_{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n_{2} and n is nn_{2}. Multiply \frac{2}{n_{2}} times \frac{n}{n}. Multiply \frac{2}{n} times \frac{n_{2}}{n_{2}}.
8314\times \frac{2n+2n_{2}}{nn_{2}}
Since \frac{2n}{nn_{2}} and \frac{2n_{2}}{nn_{2}} have the same denominator, add them by adding their numerators.
\frac{8314\left(2n+2n_{2}\right)}{nn_{2}}
Express 8314\times \frac{2n+2n_{2}}{nn_{2}} as a single fraction.
\frac{16628n+16628n_{2}}{nn_{2}}
Use the distributive property to multiply 8314 by 2n+2n_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}