Evaluate
\frac{207}{16}=12.9375
Factor
\frac{3 ^ {2} \cdot 23}{2 ^ {4}} = 12\frac{15}{16} = 12.9375
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)828}\\\end{array}
Use the 1^{st} digit 8 from dividend 828
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)828}\\\end{array}
Since 8 is less than 64, use the next digit 2 from dividend 828 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)828}\\\end{array}
Use the 2^{nd} digit 2 from dividend 828
\begin{array}{l}\phantom{64)}01\phantom{4}\\64\overline{)828}\\\phantom{64)}\underline{\phantom{}64\phantom{9}}\\\phantom{64)}18\\\end{array}
Find closest multiple of 64 to 82. We see that 1 \times 64 = 64 is the nearest. Now subtract 64 from 82 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{64)}01\phantom{5}\\64\overline{)828}\\\phantom{64)}\underline{\phantom{}64\phantom{9}}\\\phantom{64)}188\\\end{array}
Use the 3^{rd} digit 8 from dividend 828
\begin{array}{l}\phantom{64)}012\phantom{6}\\64\overline{)828}\\\phantom{64)}\underline{\phantom{}64\phantom{9}}\\\phantom{64)}188\\\phantom{64)}\underline{\phantom{}128\phantom{}}\\\phantom{64)9}60\\\end{array}
Find closest multiple of 64 to 188. We see that 2 \times 64 = 128 is the nearest. Now subtract 128 from 188 to get reminder 60. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }60
Since 60 is less than 64, stop the division. The reminder is 60. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}