Evaluate
36
Factor
2^{2}\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)828}\\\end{array}
Use the 1^{st} digit 8 from dividend 828
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)828}\\\end{array}
Since 8 is less than 23, use the next digit 2 from dividend 828 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)828}\\\end{array}
Use the 2^{nd} digit 2 from dividend 828
\begin{array}{l}\phantom{23)}03\phantom{4}\\23\overline{)828}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)}13\\\end{array}
Find closest multiple of 23 to 82. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 82 to get reminder 13. Add 3 to quotient.
\begin{array}{l}\phantom{23)}03\phantom{5}\\23\overline{)828}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)}138\\\end{array}
Use the 3^{rd} digit 8 from dividend 828
\begin{array}{l}\phantom{23)}036\phantom{6}\\23\overline{)828}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)}138\\\phantom{23)}\underline{\phantom{}138\phantom{}}\\\phantom{23)999}0\\\end{array}
Find closest multiple of 23 to 138. We see that 6 \times 23 = 138 is the nearest. Now subtract 138 from 138 to get reminder 0. Add 6 to quotient.
\text{Quotient: }36 \text{Reminder: }0
Since 0 is less than 23, stop the division. The reminder is 0. The topmost line 036 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}