Evaluate
\frac{411}{11}\approx 37.363636364
Factor
\frac{3 \cdot 137}{11} = 37\frac{4}{11} = 37.36363636363637
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)822}\\\end{array}
Use the 1^{st} digit 8 from dividend 822
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)822}\\\end{array}
Since 8 is less than 22, use the next digit 2 from dividend 822 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)822}\\\end{array}
Use the 2^{nd} digit 2 from dividend 822
\begin{array}{l}\phantom{22)}03\phantom{4}\\22\overline{)822}\\\phantom{22)}\underline{\phantom{}66\phantom{9}}\\\phantom{22)}16\\\end{array}
Find closest multiple of 22 to 82. We see that 3 \times 22 = 66 is the nearest. Now subtract 66 from 82 to get reminder 16. Add 3 to quotient.
\begin{array}{l}\phantom{22)}03\phantom{5}\\22\overline{)822}\\\phantom{22)}\underline{\phantom{}66\phantom{9}}\\\phantom{22)}162\\\end{array}
Use the 3^{rd} digit 2 from dividend 822
\begin{array}{l}\phantom{22)}037\phantom{6}\\22\overline{)822}\\\phantom{22)}\underline{\phantom{}66\phantom{9}}\\\phantom{22)}162\\\phantom{22)}\underline{\phantom{}154\phantom{}}\\\phantom{22)99}8\\\end{array}
Find closest multiple of 22 to 162. We see that 7 \times 22 = 154 is the nearest. Now subtract 154 from 162 to get reminder 8. Add 7 to quotient.
\text{Quotient: }37 \text{Reminder: }8
Since 8 is less than 22, stop the division. The reminder is 8. The topmost line 037 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 37.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}