Solve for a
a=\frac{81}{\left(s+4\right)^{2}}
s\neq -4
Solve for s (complex solution)
s=9a^{-\frac{1}{2}}-4
s=-9a^{-\frac{1}{2}}-4\text{, }a\neq 0
Solve for s
s=-4+\frac{9}{\sqrt{a}}
s=-4-\frac{9}{\sqrt{a}}\text{, }a>0
Share
Copied to clipboard
82=a\left(s^{2}+8s+16\right)+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(s+4\right)^{2}.
82=as^{2}+8as+16a+1
Use the distributive property to multiply a by s^{2}+8s+16.
as^{2}+8as+16a+1=82
Swap sides so that all variable terms are on the left hand side.
as^{2}+8as+16a=82-1
Subtract 1 from both sides.
as^{2}+8as+16a=81
Subtract 1 from 82 to get 81.
\left(s^{2}+8s+16\right)a=81
Combine all terms containing a.
\frac{\left(s^{2}+8s+16\right)a}{s^{2}+8s+16}=\frac{81}{s^{2}+8s+16}
Divide both sides by s^{2}+8s+16.
a=\frac{81}{s^{2}+8s+16}
Dividing by s^{2}+8s+16 undoes the multiplication by s^{2}+8s+16.
a=\frac{81}{\left(s+4\right)^{2}}
Divide 81 by s^{2}+8s+16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}