Evaluate
\frac{82}{29}\approx 2.827586207
Factor
\frac{2 \cdot 41}{29} = 2\frac{24}{29} = 2.8275862068965516
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)82}\\\end{array}
Use the 1^{st} digit 8 from dividend 82
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)82}\\\end{array}
Since 8 is less than 29, use the next digit 2 from dividend 82 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)82}\\\end{array}
Use the 2^{nd} digit 2 from dividend 82
\begin{array}{l}\phantom{29)}02\phantom{4}\\29\overline{)82}\\\phantom{29)}\underline{\phantom{}58\phantom{}}\\\phantom{29)}24\\\end{array}
Find closest multiple of 29 to 82. We see that 2 \times 29 = 58 is the nearest. Now subtract 58 from 82 to get reminder 24. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }24
Since 24 is less than 29, stop the division. The reminder is 24. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}