Solve for x
x=8
x = \frac{25}{7} = 3\frac{4}{7} \approx 3.571428571
Graph
Share
Copied to clipboard
81x-200=7x^{2}
Subtract 200 from both sides.
81x-200-7x^{2}=0
Subtract 7x^{2} from both sides.
-7x^{2}+81x-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-81±\sqrt{81^{2}-4\left(-7\right)\left(-200\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 81 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-81±\sqrt{6561-4\left(-7\right)\left(-200\right)}}{2\left(-7\right)}
Square 81.
x=\frac{-81±\sqrt{6561+28\left(-200\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-81±\sqrt{6561-5600}}{2\left(-7\right)}
Multiply 28 times -200.
x=\frac{-81±\sqrt{961}}{2\left(-7\right)}
Add 6561 to -5600.
x=\frac{-81±31}{2\left(-7\right)}
Take the square root of 961.
x=\frac{-81±31}{-14}
Multiply 2 times -7.
x=-\frac{50}{-14}
Now solve the equation x=\frac{-81±31}{-14} when ± is plus. Add -81 to 31.
x=\frac{25}{7}
Reduce the fraction \frac{-50}{-14} to lowest terms by extracting and canceling out 2.
x=-\frac{112}{-14}
Now solve the equation x=\frac{-81±31}{-14} when ± is minus. Subtract 31 from -81.
x=8
Divide -112 by -14.
x=\frac{25}{7} x=8
The equation is now solved.
81x-7x^{2}=200
Subtract 7x^{2} from both sides.
-7x^{2}+81x=200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-7x^{2}+81x}{-7}=\frac{200}{-7}
Divide both sides by -7.
x^{2}+\frac{81}{-7}x=\frac{200}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{81}{7}x=\frac{200}{-7}
Divide 81 by -7.
x^{2}-\frac{81}{7}x=-\frac{200}{7}
Divide 200 by -7.
x^{2}-\frac{81}{7}x+\left(-\frac{81}{14}\right)^{2}=-\frac{200}{7}+\left(-\frac{81}{14}\right)^{2}
Divide -\frac{81}{7}, the coefficient of the x term, by 2 to get -\frac{81}{14}. Then add the square of -\frac{81}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{81}{7}x+\frac{6561}{196}=-\frac{200}{7}+\frac{6561}{196}
Square -\frac{81}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{81}{7}x+\frac{6561}{196}=\frac{961}{196}
Add -\frac{200}{7} to \frac{6561}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{81}{14}\right)^{2}=\frac{961}{196}
Factor x^{2}-\frac{81}{7}x+\frac{6561}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{81}{14}\right)^{2}}=\sqrt{\frac{961}{196}}
Take the square root of both sides of the equation.
x-\frac{81}{14}=\frac{31}{14} x-\frac{81}{14}=-\frac{31}{14}
Simplify.
x=8 x=\frac{25}{7}
Add \frac{81}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}