Solve for x
x=\frac{14\sqrt{6}}{81}+\frac{53}{27}\approx 2.38633156
Graph
Share
Copied to clipboard
81x=159+2\sqrt{2}\sqrt{147}
Add 12 and 147 to get 159.
81x=159+2\sqrt{2}\times 7\sqrt{3}
Factor 147=7^{2}\times 3. Rewrite the square root of the product \sqrt{7^{2}\times 3} as the product of square roots \sqrt{7^{2}}\sqrt{3}. Take the square root of 7^{2}.
81x=159+14\sqrt{2}\sqrt{3}
Multiply 2 and 7 to get 14.
81x=159+14\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
81x=14\sqrt{6}+159
The equation is in standard form.
\frac{81x}{81}=\frac{14\sqrt{6}+159}{81}
Divide both sides by 81.
x=\frac{14\sqrt{6}+159}{81}
Dividing by 81 undoes the multiplication by 81.
x=\frac{14\sqrt{6}}{81}+\frac{53}{27}
Divide 159+14\sqrt{6} by 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}