Evaluate
\frac{819}{11}\approx 74.454545455
Factor
\frac{3 ^ {2} \cdot 7 \cdot 13}{11} = 74\frac{5}{11} = 74.45454545454545
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)819}\\\end{array}
Use the 1^{st} digit 8 from dividend 819
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)819}\\\end{array}
Since 8 is less than 11, use the next digit 1 from dividend 819 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)819}\\\end{array}
Use the 2^{nd} digit 1 from dividend 819
\begin{array}{l}\phantom{11)}07\phantom{4}\\11\overline{)819}\\\phantom{11)}\underline{\phantom{}77\phantom{9}}\\\phantom{11)9}4\\\end{array}
Find closest multiple of 11 to 81. We see that 7 \times 11 = 77 is the nearest. Now subtract 77 from 81 to get reminder 4. Add 7 to quotient.
\begin{array}{l}\phantom{11)}07\phantom{5}\\11\overline{)819}\\\phantom{11)}\underline{\phantom{}77\phantom{9}}\\\phantom{11)9}49\\\end{array}
Use the 3^{rd} digit 9 from dividend 819
\begin{array}{l}\phantom{11)}074\phantom{6}\\11\overline{)819}\\\phantom{11)}\underline{\phantom{}77\phantom{9}}\\\phantom{11)9}49\\\phantom{11)}\underline{\phantom{9}44\phantom{}}\\\phantom{11)99}5\\\end{array}
Find closest multiple of 11 to 49. We see that 4 \times 11 = 44 is the nearest. Now subtract 44 from 49 to get reminder 5. Add 4 to quotient.
\text{Quotient: }74 \text{Reminder: }5
Since 5 is less than 11, stop the division. The reminder is 5. The topmost line 074 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 74.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}