Evaluate
\frac{81622}{52825}\approx 1.545139612
Factor
\frac{2 \cdot 37 \cdot 1103}{5 ^ {2} \cdot 2113} = 1\frac{28797}{52825} = 1.5451396119261713
Share
Copied to clipboard
\begin{array}{l}\phantom{52825)}\phantom{1}\\52825\overline{)81622}\\\end{array}
Use the 1^{st} digit 8 from dividend 81622
\begin{array}{l}\phantom{52825)}0\phantom{2}\\52825\overline{)81622}\\\end{array}
Since 8 is less than 52825, use the next digit 1 from dividend 81622 and add 0 to the quotient
\begin{array}{l}\phantom{52825)}0\phantom{3}\\52825\overline{)81622}\\\end{array}
Use the 2^{nd} digit 1 from dividend 81622
\begin{array}{l}\phantom{52825)}00\phantom{4}\\52825\overline{)81622}\\\end{array}
Since 81 is less than 52825, use the next digit 6 from dividend 81622 and add 0 to the quotient
\begin{array}{l}\phantom{52825)}00\phantom{5}\\52825\overline{)81622}\\\end{array}
Use the 3^{rd} digit 6 from dividend 81622
\begin{array}{l}\phantom{52825)}000\phantom{6}\\52825\overline{)81622}\\\end{array}
Since 816 is less than 52825, use the next digit 2 from dividend 81622 and add 0 to the quotient
\begin{array}{l}\phantom{52825)}000\phantom{7}\\52825\overline{)81622}\\\end{array}
Use the 4^{th} digit 2 from dividend 81622
\begin{array}{l}\phantom{52825)}0000\phantom{8}\\52825\overline{)81622}\\\end{array}
Since 8162 is less than 52825, use the next digit 2 from dividend 81622 and add 0 to the quotient
\begin{array}{l}\phantom{52825)}0000\phantom{9}\\52825\overline{)81622}\\\end{array}
Use the 5^{th} digit 2 from dividend 81622
\begin{array}{l}\phantom{52825)}00001\phantom{10}\\52825\overline{)81622}\\\phantom{52825)}\underline{\phantom{}52825\phantom{}}\\\phantom{52825)}28797\\\end{array}
Find closest multiple of 52825 to 81622. We see that 1 \times 52825 = 52825 is the nearest. Now subtract 52825 from 81622 to get reminder 28797. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }28797
Since 28797 is less than 52825, stop the division. The reminder is 28797. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}