Solve for r
r=\frac{7}{9}\approx 0.777777778
r=-\frac{7}{9}\approx -0.777777778
Share
Copied to clipboard
r^{2}=\frac{49}{81}
Divide both sides by 81.
r^{2}-\frac{49}{81}=0
Subtract \frac{49}{81} from both sides.
81r^{2}-49=0
Multiply both sides by 81.
\left(9r-7\right)\left(9r+7\right)=0
Consider 81r^{2}-49. Rewrite 81r^{2}-49 as \left(9r\right)^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=\frac{7}{9} r=-\frac{7}{9}
To find equation solutions, solve 9r-7=0 and 9r+7=0.
r^{2}=\frac{49}{81}
Divide both sides by 81.
r=\frac{7}{9} r=-\frac{7}{9}
Take the square root of both sides of the equation.
r^{2}=\frac{49}{81}
Divide both sides by 81.
r^{2}-\frac{49}{81}=0
Subtract \frac{49}{81} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{49}{81}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{49}{81} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{49}{81}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{\frac{196}{81}}}{2}
Multiply -4 times -\frac{49}{81}.
r=\frac{0±\frac{14}{9}}{2}
Take the square root of \frac{196}{81}.
r=\frac{7}{9}
Now solve the equation r=\frac{0±\frac{14}{9}}{2} when ± is plus.
r=-\frac{7}{9}
Now solve the equation r=\frac{0±\frac{14}{9}}{2} when ± is minus.
r=\frac{7}{9} r=-\frac{7}{9}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}