Solve for a
a=\frac{-\sqrt{61}-7}{6}\approx -2.468374946
a = \frac{\sqrt{61} + 7}{6} \approx 2.468374946
a=\frac{\sqrt{61}-7}{6}\approx 0.135041613
a=\frac{7-\sqrt{61}}{6}\approx -0.135041613
Share
Copied to clipboard
81a^{4}a^{4}+1=3007a^{4}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a^{4}.
81a^{8}+1=3007a^{4}
To multiply powers of the same base, add their exponents. Add 4 and 4 to get 8.
81a^{8}+1-3007a^{4}=0
Subtract 3007a^{4} from both sides.
81t^{2}-3007t+1=0
Substitute t for a^{4}.
t=\frac{-\left(-3007\right)±\sqrt{\left(-3007\right)^{2}-4\times 81\times 1}}{2\times 81}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 81 for a, -3007 for b, and 1 for c in the quadratic formula.
t=\frac{3007±385\sqrt{61}}{162}
Do the calculations.
t=\frac{385\sqrt{61}+3007}{162} t=\frac{3007-385\sqrt{61}}{162}
Solve the equation t=\frac{3007±385\sqrt{61}}{162} when ± is plus and when ± is minus.
a=\frac{\sqrt{61}+7}{6} a=-\frac{\sqrt{61}+7}{6} a=-\frac{7-\sqrt{61}}{6} a=\frac{7-\sqrt{61}}{6}
Since a=t^{4}, the solutions are obtained by evaluating a=±\sqrt[4]{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}