Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(27x^{2}-7x\right)
Factor out 3.
x\left(27x-7\right)
Consider 27x^{2}-7x. Factor out x.
3x\left(27x-7\right)
Rewrite the complete factored expression.
81x^{2}-21x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}}}{2\times 81}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±21}{2\times 81}
Take the square root of \left(-21\right)^{2}.
x=\frac{21±21}{2\times 81}
The opposite of -21 is 21.
x=\frac{21±21}{162}
Multiply 2 times 81.
x=\frac{42}{162}
Now solve the equation x=\frac{21±21}{162} when ± is plus. Add 21 to 21.
x=\frac{7}{27}
Reduce the fraction \frac{42}{162} to lowest terms by extracting and canceling out 6.
x=\frac{0}{162}
Now solve the equation x=\frac{21±21}{162} when ± is minus. Subtract 21 from 21.
x=0
Divide 0 by 162.
81x^{2}-21x=81\left(x-\frac{7}{27}\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{27} for x_{1} and 0 for x_{2}.
81x^{2}-21x=81\times \frac{27x-7}{27}x
Subtract \frac{7}{27} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
81x^{2}-21x=3\left(27x-7\right)x
Cancel out 27, the greatest common factor in 81 and 27.