Evaluate
\frac{8095}{111}\approx 72.927927928
Factor
\frac{5 \cdot 1619}{3 \cdot 37} = 72\frac{103}{111} = 72.92792792792793
Share
Copied to clipboard
\begin{array}{l}\phantom{111)}\phantom{1}\\111\overline{)8095}\\\end{array}
Use the 1^{st} digit 8 from dividend 8095
\begin{array}{l}\phantom{111)}0\phantom{2}\\111\overline{)8095}\\\end{array}
Since 8 is less than 111, use the next digit 0 from dividend 8095 and add 0 to the quotient
\begin{array}{l}\phantom{111)}0\phantom{3}\\111\overline{)8095}\\\end{array}
Use the 2^{nd} digit 0 from dividend 8095
\begin{array}{l}\phantom{111)}00\phantom{4}\\111\overline{)8095}\\\end{array}
Since 80 is less than 111, use the next digit 9 from dividend 8095 and add 0 to the quotient
\begin{array}{l}\phantom{111)}00\phantom{5}\\111\overline{)8095}\\\end{array}
Use the 3^{rd} digit 9 from dividend 8095
\begin{array}{l}\phantom{111)}007\phantom{6}\\111\overline{)8095}\\\phantom{111)}\underline{\phantom{}777\phantom{9}}\\\phantom{111)9}32\\\end{array}
Find closest multiple of 111 to 809. We see that 7 \times 111 = 777 is the nearest. Now subtract 777 from 809 to get reminder 32. Add 7 to quotient.
\begin{array}{l}\phantom{111)}007\phantom{7}\\111\overline{)8095}\\\phantom{111)}\underline{\phantom{}777\phantom{9}}\\\phantom{111)9}325\\\end{array}
Use the 4^{th} digit 5 from dividend 8095
\begin{array}{l}\phantom{111)}0072\phantom{8}\\111\overline{)8095}\\\phantom{111)}\underline{\phantom{}777\phantom{9}}\\\phantom{111)9}325\\\phantom{111)}\underline{\phantom{9}222\phantom{}}\\\phantom{111)9}103\\\end{array}
Find closest multiple of 111 to 325. We see that 2 \times 111 = 222 is the nearest. Now subtract 222 from 325 to get reminder 103. Add 2 to quotient.
\text{Quotient: }72 \text{Reminder: }103
Since 103 is less than 111, stop the division. The reminder is 103. The topmost line 0072 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}