Evaluate
\frac{4023235}{6}\approx 670539.166666667
Factor
\frac{5 \cdot 307 \cdot 2621}{2 \cdot 3} = 670539\frac{1}{6} = 670539.1666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)8046470}\\\end{array}
Use the 1^{st} digit 8 from dividend 8046470
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)8046470}\\\end{array}
Since 8 is less than 12, use the next digit 0 from dividend 8046470 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)8046470}\\\end{array}
Use the 2^{nd} digit 0 from dividend 8046470
\begin{array}{l}\phantom{12)}06\phantom{4}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{12)}06\phantom{5}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\end{array}
Use the 3^{rd} digit 4 from dividend 8046470
\begin{array}{l}\phantom{12)}067\phantom{6}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}0\\\end{array}
Find closest multiple of 12 to 84. We see that 7 \times 12 = 84 is the nearest. Now subtract 84 from 84 to get reminder 0. Add 7 to quotient.
\begin{array}{l}\phantom{12)}067\phantom{7}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}6\\\end{array}
Use the 4^{th} digit 6 from dividend 8046470
\begin{array}{l}\phantom{12)}0670\phantom{8}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}6\\\end{array}
Since 6 is less than 12, use the next digit 4 from dividend 8046470 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0670\phantom{9}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}64\\\end{array}
Use the 5^{th} digit 4 from dividend 8046470
\begin{array}{l}\phantom{12)}06705\phantom{10}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}64\\\phantom{12)}\underline{\phantom{999}60\phantom{99}}\\\phantom{12)9999}4\\\end{array}
Find closest multiple of 12 to 64. We see that 5 \times 12 = 60 is the nearest. Now subtract 60 from 64 to get reminder 4. Add 5 to quotient.
\begin{array}{l}\phantom{12)}06705\phantom{11}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}64\\\phantom{12)}\underline{\phantom{999}60\phantom{99}}\\\phantom{12)9999}47\\\end{array}
Use the 6^{th} digit 7 from dividend 8046470
\begin{array}{l}\phantom{12)}067053\phantom{12}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}64\\\phantom{12)}\underline{\phantom{999}60\phantom{99}}\\\phantom{12)9999}47\\\phantom{12)}\underline{\phantom{9999}36\phantom{9}}\\\phantom{12)9999}11\\\end{array}
Find closest multiple of 12 to 47. We see that 3 \times 12 = 36 is the nearest. Now subtract 36 from 47 to get reminder 11. Add 3 to quotient.
\begin{array}{l}\phantom{12)}067053\phantom{13}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}64\\\phantom{12)}\underline{\phantom{999}60\phantom{99}}\\\phantom{12)9999}47\\\phantom{12)}\underline{\phantom{9999}36\phantom{9}}\\\phantom{12)9999}110\\\end{array}
Use the 7^{th} digit 0 from dividend 8046470
\begin{array}{l}\phantom{12)}0670539\phantom{14}\\12\overline{)8046470}\\\phantom{12)}\underline{\phantom{}72\phantom{99999}}\\\phantom{12)9}84\\\phantom{12)}\underline{\phantom{9}84\phantom{9999}}\\\phantom{12)999}64\\\phantom{12)}\underline{\phantom{999}60\phantom{99}}\\\phantom{12)9999}47\\\phantom{12)}\underline{\phantom{9999}36\phantom{9}}\\\phantom{12)9999}110\\\phantom{12)}\underline{\phantom{9999}108\phantom{}}\\\phantom{12)999999}2\\\end{array}
Find closest multiple of 12 to 110. We see that 9 \times 12 = 108 is the nearest. Now subtract 108 from 110 to get reminder 2. Add 9 to quotient.
\text{Quotient: }670539 \text{Reminder: }2
Since 2 is less than 12, stop the division. The reminder is 2. The topmost line 0670539 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 670539.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}