Solve for x
x = \frac{\sqrt{4009} - 53}{10} \approx 1.031666447
x=\frac{-\sqrt{4009}-53}{10}\approx -11.631666447
Graph
Share
Copied to clipboard
800x+4500x+500x^{2}=6000
Use the distributive property to multiply 500x by 9+x.
5300x+500x^{2}=6000
Combine 800x and 4500x to get 5300x.
5300x+500x^{2}-6000=0
Subtract 6000 from both sides.
500x^{2}+5300x-6000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5300±\sqrt{5300^{2}-4\times 500\left(-6000\right)}}{2\times 500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 500 for a, 5300 for b, and -6000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5300±\sqrt{28090000-4\times 500\left(-6000\right)}}{2\times 500}
Square 5300.
x=\frac{-5300±\sqrt{28090000-2000\left(-6000\right)}}{2\times 500}
Multiply -4 times 500.
x=\frac{-5300±\sqrt{28090000+12000000}}{2\times 500}
Multiply -2000 times -6000.
x=\frac{-5300±\sqrt{40090000}}{2\times 500}
Add 28090000 to 12000000.
x=\frac{-5300±100\sqrt{4009}}{2\times 500}
Take the square root of 40090000.
x=\frac{-5300±100\sqrt{4009}}{1000}
Multiply 2 times 500.
x=\frac{100\sqrt{4009}-5300}{1000}
Now solve the equation x=\frac{-5300±100\sqrt{4009}}{1000} when ± is plus. Add -5300 to 100\sqrt{4009}.
x=\frac{\sqrt{4009}-53}{10}
Divide -5300+100\sqrt{4009} by 1000.
x=\frac{-100\sqrt{4009}-5300}{1000}
Now solve the equation x=\frac{-5300±100\sqrt{4009}}{1000} when ± is minus. Subtract 100\sqrt{4009} from -5300.
x=\frac{-\sqrt{4009}-53}{10}
Divide -5300-100\sqrt{4009} by 1000.
x=\frac{\sqrt{4009}-53}{10} x=\frac{-\sqrt{4009}-53}{10}
The equation is now solved.
800x+4500x+500x^{2}=6000
Use the distributive property to multiply 500x by 9+x.
5300x+500x^{2}=6000
Combine 800x and 4500x to get 5300x.
500x^{2}+5300x=6000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{500x^{2}+5300x}{500}=\frac{6000}{500}
Divide both sides by 500.
x^{2}+\frac{5300}{500}x=\frac{6000}{500}
Dividing by 500 undoes the multiplication by 500.
x^{2}+\frac{53}{5}x=\frac{6000}{500}
Reduce the fraction \frac{5300}{500} to lowest terms by extracting and canceling out 100.
x^{2}+\frac{53}{5}x=12
Divide 6000 by 500.
x^{2}+\frac{53}{5}x+\left(\frac{53}{10}\right)^{2}=12+\left(\frac{53}{10}\right)^{2}
Divide \frac{53}{5}, the coefficient of the x term, by 2 to get \frac{53}{10}. Then add the square of \frac{53}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{53}{5}x+\frac{2809}{100}=12+\frac{2809}{100}
Square \frac{53}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{53}{5}x+\frac{2809}{100}=\frac{4009}{100}
Add 12 to \frac{2809}{100}.
\left(x+\frac{53}{10}\right)^{2}=\frac{4009}{100}
Factor x^{2}+\frac{53}{5}x+\frac{2809}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{53}{10}\right)^{2}}=\sqrt{\frac{4009}{100}}
Take the square root of both sides of the equation.
x+\frac{53}{10}=\frac{\sqrt{4009}}{10} x+\frac{53}{10}=-\frac{\sqrt{4009}}{10}
Simplify.
x=\frac{\sqrt{4009}-53}{10} x=\frac{-\sqrt{4009}-53}{10}
Subtract \frac{53}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}