Solve for x (complex solution)
x=15+5\sqrt{119}i\approx 15+54.543560573i
x=-5\sqrt{119}i+15\approx 15-54.543560573i
Graph
Share
Copied to clipboard
800+60x-2x^{2}=7200
Combine 80x and -20x to get 60x.
800+60x-2x^{2}-7200=0
Subtract 7200 from both sides.
-6400+60x-2x^{2}=0
Subtract 7200 from 800 to get -6400.
-2x^{2}+60x-6400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\left(-2\right)\left(-6400\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 60 for b, and -6400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-2\right)\left(-6400\right)}}{2\left(-2\right)}
Square 60.
x=\frac{-60±\sqrt{3600+8\left(-6400\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-60±\sqrt{3600-51200}}{2\left(-2\right)}
Multiply 8 times -6400.
x=\frac{-60±\sqrt{-47600}}{2\left(-2\right)}
Add 3600 to -51200.
x=\frac{-60±20\sqrt{119}i}{2\left(-2\right)}
Take the square root of -47600.
x=\frac{-60±20\sqrt{119}i}{-4}
Multiply 2 times -2.
x=\frac{-60+20\sqrt{119}i}{-4}
Now solve the equation x=\frac{-60±20\sqrt{119}i}{-4} when ± is plus. Add -60 to 20i\sqrt{119}.
x=-5\sqrt{119}i+15
Divide -60+20i\sqrt{119} by -4.
x=\frac{-20\sqrt{119}i-60}{-4}
Now solve the equation x=\frac{-60±20\sqrt{119}i}{-4} when ± is minus. Subtract 20i\sqrt{119} from -60.
x=15+5\sqrt{119}i
Divide -60-20i\sqrt{119} by -4.
x=-5\sqrt{119}i+15 x=15+5\sqrt{119}i
The equation is now solved.
800+60x-2x^{2}=7200
Combine 80x and -20x to get 60x.
60x-2x^{2}=7200-800
Subtract 800 from both sides.
60x-2x^{2}=6400
Subtract 800 from 7200 to get 6400.
-2x^{2}+60x=6400
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+60x}{-2}=\frac{6400}{-2}
Divide both sides by -2.
x^{2}+\frac{60}{-2}x=\frac{6400}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-30x=\frac{6400}{-2}
Divide 60 by -2.
x^{2}-30x=-3200
Divide 6400 by -2.
x^{2}-30x+\left(-15\right)^{2}=-3200+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-3200+225
Square -15.
x^{2}-30x+225=-2975
Add -3200 to 225.
\left(x-15\right)^{2}=-2975
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{-2975}
Take the square root of both sides of the equation.
x-15=5\sqrt{119}i x-15=-5\sqrt{119}i
Simplify.
x=15+5\sqrt{119}i x=-5\sqrt{119}i+15
Add 15 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}