Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Multiply both sides of the equation by 10.
\left(8000+8000\times \frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Use the distributive property to multiply 8000 by 1+\frac{x}{10}.
\left(8000+800x\right)\left(1-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+8000\left(-\frac{x}{10}\right)+800x+800x\left(-\frac{x}{10}\right)=8000-320
Apply the distributive property by multiplying each term of 8000+800x by each term of 1-\frac{x}{10}.
8000-800x+800x+800x\left(-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+800x\left(-\frac{x}{10}\right)=8000-320
Combine -800x and 800x to get 0.
8000-80xx=8000-320
Cancel out 10, the greatest common factor in 800 and 10.
8000-80x^{2}=8000-320
Multiply x and x to get x^{2}.
8000-80x^{2}=7680
Subtract 320 from 8000 to get 7680.
-80x^{2}=7680-8000
Subtract 8000 from both sides.
-80x^{2}=-320
Subtract 8000 from 7680 to get -320.
x^{2}=\frac{-320}{-80}
Divide both sides by -80.
x^{2}=4
Divide -320 by -80 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
8000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Multiply both sides of the equation by 10.
\left(8000+8000\times \frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Use the distributive property to multiply 8000 by 1+\frac{x}{10}.
\left(8000+800x\right)\left(1-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+8000\left(-\frac{x}{10}\right)+800x+800x\left(-\frac{x}{10}\right)=8000-320
Apply the distributive property by multiplying each term of 8000+800x by each term of 1-\frac{x}{10}.
8000-800x+800x+800x\left(-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+800x\left(-\frac{x}{10}\right)=8000-320
Combine -800x and 800x to get 0.
8000-80xx=8000-320
Cancel out 10, the greatest common factor in 800 and 10.
8000-80x^{2}=8000-320
Multiply x and x to get x^{2}.
8000-80x^{2}=7680
Subtract 320 from 8000 to get 7680.
8000-80x^{2}-7680=0
Subtract 7680 from both sides.
320-80x^{2}=0
Subtract 7680 from 8000 to get 320.
-80x^{2}+320=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-80\right)\times 320}}{2\left(-80\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -80 for a, 0 for b, and 320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-80\right)\times 320}}{2\left(-80\right)}
Square 0.
x=\frac{0±\sqrt{320\times 320}}{2\left(-80\right)}
Multiply -4 times -80.
x=\frac{0±\sqrt{102400}}{2\left(-80\right)}
Multiply 320 times 320.
x=\frac{0±320}{2\left(-80\right)}
Take the square root of 102400.
x=\frac{0±320}{-160}
Multiply 2 times -80.
x=-2
Now solve the equation x=\frac{0±320}{-160} when ± is plus. Divide 320 by -160.
x=2
Now solve the equation x=\frac{0±320}{-160} when ± is minus. Divide -320 by -160.
x=-2 x=2
The equation is now solved.