Solve for x
x=2
x=-2
Graph
Share
Copied to clipboard
8000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Multiply both sides of the equation by 10.
\left(8000+8000\times \frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Use the distributive property to multiply 8000 by 1+\frac{x}{10}.
\left(8000+800x\right)\left(1-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+8000\left(-\frac{x}{10}\right)+800x+800x\left(-\frac{x}{10}\right)=8000-320
Apply the distributive property by multiplying each term of 8000+800x by each term of 1-\frac{x}{10}.
8000-800x+800x+800x\left(-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+800x\left(-\frac{x}{10}\right)=8000-320
Combine -800x and 800x to get 0.
8000-80xx=8000-320
Cancel out 10, the greatest common factor in 800 and 10.
8000-80x^{2}=8000-320
Multiply x and x to get x^{2}.
8000-80x^{2}=7680
Subtract 320 from 8000 to get 7680.
-80x^{2}=7680-8000
Subtract 8000 from both sides.
-80x^{2}=-320
Subtract 8000 from 7680 to get -320.
x^{2}=\frac{-320}{-80}
Divide both sides by -80.
x^{2}=4
Divide -320 by -80 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
8000\left(1+\frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Multiply both sides of the equation by 10.
\left(8000+8000\times \frac{x}{10}\right)\left(1-\frac{x}{10}\right)=8000-320
Use the distributive property to multiply 8000 by 1+\frac{x}{10}.
\left(8000+800x\right)\left(1-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+8000\left(-\frac{x}{10}\right)+800x+800x\left(-\frac{x}{10}\right)=8000-320
Apply the distributive property by multiplying each term of 8000+800x by each term of 1-\frac{x}{10}.
8000-800x+800x+800x\left(-\frac{x}{10}\right)=8000-320
Cancel out 10, the greatest common factor in 8000 and 10.
8000+800x\left(-\frac{x}{10}\right)=8000-320
Combine -800x and 800x to get 0.
8000-80xx=8000-320
Cancel out 10, the greatest common factor in 800 and 10.
8000-80x^{2}=8000-320
Multiply x and x to get x^{2}.
8000-80x^{2}=7680
Subtract 320 from 8000 to get 7680.
8000-80x^{2}-7680=0
Subtract 7680 from both sides.
320-80x^{2}=0
Subtract 7680 from 8000 to get 320.
-80x^{2}+320=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-80\right)\times 320}}{2\left(-80\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -80 for a, 0 for b, and 320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-80\right)\times 320}}{2\left(-80\right)}
Square 0.
x=\frac{0±\sqrt{320\times 320}}{2\left(-80\right)}
Multiply -4 times -80.
x=\frac{0±\sqrt{102400}}{2\left(-80\right)}
Multiply 320 times 320.
x=\frac{0±320}{2\left(-80\right)}
Take the square root of 102400.
x=\frac{0±320}{-160}
Multiply 2 times -80.
x=-2
Now solve the equation x=\frac{0±320}{-160} when ± is plus. Divide 320 by -160.
x=2
Now solve the equation x=\frac{0±320}{-160} when ± is minus. Divide -320 by -160.
x=-2 x=2
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}