Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{32)}\phantom{1}\\32\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{32)}0\phantom{2}\\32\overline{)800}\\\end{array}
Since 8 is less than 32, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{32)}0\phantom{3}\\32\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{32)}02\phantom{4}\\32\overline{)800}\\\phantom{32)}\underline{\phantom{}64\phantom{9}}\\\phantom{32)}16\\\end{array}
Find closest multiple of 32 to 80. We see that 2 \times 32 = 64 is the nearest. Now subtract 64 from 80 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{32)}02\phantom{5}\\32\overline{)800}\\\phantom{32)}\underline{\phantom{}64\phantom{9}}\\\phantom{32)}160\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{32)}025\phantom{6}\\32\overline{)800}\\\phantom{32)}\underline{\phantom{}64\phantom{9}}\\\phantom{32)}160\\\phantom{32)}\underline{\phantom{}160\phantom{}}\\\phantom{32)999}0\\\end{array}
Find closest multiple of 32 to 160. We see that 5 \times 32 = 160 is the nearest. Now subtract 160 from 160 to get reminder 0. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }0
Since 0 is less than 32, stop the division. The reminder is 0. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}