Evaluate
\frac{200}{3}\approx 66.666666667
Factor
\frac{2 ^ {3} \cdot 5 ^ {2}}{3} = 66\frac{2}{3} = 66.66666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)800}\\\end{array}
Since 8 is less than 12, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{12)}06\phantom{4}\\12\overline{)800}\\\phantom{12)}\underline{\phantom{}72\phantom{9}}\\\phantom{12)9}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\begin{array}{l}\phantom{12)}06\phantom{5}\\12\overline{)800}\\\phantom{12)}\underline{\phantom{}72\phantom{9}}\\\phantom{12)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{12)}066\phantom{6}\\12\overline{)800}\\\phantom{12)}\underline{\phantom{}72\phantom{9}}\\\phantom{12)9}80\\\phantom{12)}\underline{\phantom{9}72\phantom{}}\\\phantom{12)99}8\\\end{array}
Find closest multiple of 12 to 80. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 80 to get reminder 8. Add 6 to quotient.
\text{Quotient: }66 \text{Reminder: }8
Since 8 is less than 12, stop the division. The reminder is 8. The topmost line 066 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 66.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}