Evaluate
\frac{800}{11}\approx 72.727272727
Factor
\frac{2 ^ {5} \cdot 5 ^ {2}}{11} = 72\frac{8}{11} = 72.72727272727273
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)800}\\\end{array}
Since 8 is less than 11, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{11)}07\phantom{4}\\11\overline{)800}\\\phantom{11)}\underline{\phantom{}77\phantom{9}}\\\phantom{11)9}3\\\end{array}
Find closest multiple of 11 to 80. We see that 7 \times 11 = 77 is the nearest. Now subtract 77 from 80 to get reminder 3. Add 7 to quotient.
\begin{array}{l}\phantom{11)}07\phantom{5}\\11\overline{)800}\\\phantom{11)}\underline{\phantom{}77\phantom{9}}\\\phantom{11)9}30\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{11)}072\phantom{6}\\11\overline{)800}\\\phantom{11)}\underline{\phantom{}77\phantom{9}}\\\phantom{11)9}30\\\phantom{11)}\underline{\phantom{9}22\phantom{}}\\\phantom{11)99}8\\\end{array}
Find closest multiple of 11 to 30. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 30 to get reminder 8. Add 2 to quotient.
\text{Quotient: }72 \text{Reminder: }8
Since 8 is less than 11, stop the division. The reminder is 8. The topmost line 072 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}