Solve for x
x=1
x=7
Graph
Share
Copied to clipboard
800+\left(200+50x\right)\left(4-x\right)+\left(600-200-\left(200+50x\right)\right)x\left(-2\right)=1250
Subtract 6 from 10 to get 4.
800+800-50x^{2}+\left(600-200-\left(200+50x\right)\right)x\left(-2\right)=1250
Use the distributive property to multiply 200+50x by 4-x and combine like terms.
1600-50x^{2}+\left(600-200-\left(200+50x\right)\right)x\left(-2\right)=1250
Add 800 and 800 to get 1600.
1600-50x^{2}+\left(400-\left(200+50x\right)\right)x\left(-2\right)=1250
Subtract 200 from 600 to get 400.
1600-50x^{2}+\left(400-200-50x\right)x\left(-2\right)=1250
To find the opposite of 200+50x, find the opposite of each term.
1600-50x^{2}+\left(200-50x\right)x\left(-2\right)=1250
Subtract 200 from 400 to get 200.
1600-50x^{2}+\left(200x-50x^{2}\right)\left(-2\right)=1250
Use the distributive property to multiply 200-50x by x.
1600-50x^{2}-400x+100x^{2}=1250
Use the distributive property to multiply 200x-50x^{2} by -2.
1600+50x^{2}-400x=1250
Combine -50x^{2} and 100x^{2} to get 50x^{2}.
1600+50x^{2}-400x-1250=0
Subtract 1250 from both sides.
350+50x^{2}-400x=0
Subtract 1250 from 1600 to get 350.
50x^{2}-400x+350=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-400\right)±\sqrt{\left(-400\right)^{2}-4\times 50\times 350}}{2\times 50}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50 for a, -400 for b, and 350 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-400\right)±\sqrt{160000-4\times 50\times 350}}{2\times 50}
Square -400.
x=\frac{-\left(-400\right)±\sqrt{160000-200\times 350}}{2\times 50}
Multiply -4 times 50.
x=\frac{-\left(-400\right)±\sqrt{160000-70000}}{2\times 50}
Multiply -200 times 350.
x=\frac{-\left(-400\right)±\sqrt{90000}}{2\times 50}
Add 160000 to -70000.
x=\frac{-\left(-400\right)±300}{2\times 50}
Take the square root of 90000.
x=\frac{400±300}{2\times 50}
The opposite of -400 is 400.
x=\frac{400±300}{100}
Multiply 2 times 50.
x=\frac{700}{100}
Now solve the equation x=\frac{400±300}{100} when ± is plus. Add 400 to 300.
x=7
Divide 700 by 100.
x=\frac{100}{100}
Now solve the equation x=\frac{400±300}{100} when ± is minus. Subtract 300 from 400.
x=1
Divide 100 by 100.
x=7 x=1
The equation is now solved.
800+\left(200+50x\right)\left(4-x\right)+\left(600-200-\left(200+50x\right)\right)x\left(-2\right)=1250
Subtract 6 from 10 to get 4.
800+800-50x^{2}+\left(600-200-\left(200+50x\right)\right)x\left(-2\right)=1250
Use the distributive property to multiply 200+50x by 4-x and combine like terms.
1600-50x^{2}+\left(600-200-\left(200+50x\right)\right)x\left(-2\right)=1250
Add 800 and 800 to get 1600.
1600-50x^{2}+\left(400-\left(200+50x\right)\right)x\left(-2\right)=1250
Subtract 200 from 600 to get 400.
1600-50x^{2}+\left(400-200-50x\right)x\left(-2\right)=1250
To find the opposite of 200+50x, find the opposite of each term.
1600-50x^{2}+\left(200-50x\right)x\left(-2\right)=1250
Subtract 200 from 400 to get 200.
1600-50x^{2}+\left(200x-50x^{2}\right)\left(-2\right)=1250
Use the distributive property to multiply 200-50x by x.
1600-50x^{2}-400x+100x^{2}=1250
Use the distributive property to multiply 200x-50x^{2} by -2.
1600+50x^{2}-400x=1250
Combine -50x^{2} and 100x^{2} to get 50x^{2}.
50x^{2}-400x=1250-1600
Subtract 1600 from both sides.
50x^{2}-400x=-350
Subtract 1600 from 1250 to get -350.
\frac{50x^{2}-400x}{50}=-\frac{350}{50}
Divide both sides by 50.
x^{2}+\left(-\frac{400}{50}\right)x=-\frac{350}{50}
Dividing by 50 undoes the multiplication by 50.
x^{2}-8x=-\frac{350}{50}
Divide -400 by 50.
x^{2}-8x=-7
Divide -350 by 50.
x^{2}-8x+\left(-4\right)^{2}=-7+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-7+16
Square -4.
x^{2}-8x+16=9
Add -7 to 16.
\left(x-4\right)^{2}=9
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-4=3 x-4=-3
Simplify.
x=7 x=1
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}