Evaluate
-\frac{16\sqrt{478335}}{143}+80\approx 2.616204873
Factor
\frac{16 {(715 - \sqrt{478335})}}{143} = 2.61620487303722
Share
Copied to clipboard
80-\sqrt{6400-\frac{2\times 2.944\times 10^{6}}{14.3\times 1000}}
Calculate 80 to the power of 2 and get 6400.
80-\sqrt{6400-\frac{2.944\times 10^{6}}{14.3\times 500}}
Cancel out 2 in both numerator and denominator.
80-\sqrt{6400-\frac{2.944\times 1000000}{14.3\times 500}}
Calculate 10 to the power of 6 and get 1000000.
80-\sqrt{6400-\frac{2944000}{14.3\times 500}}
Multiply 2.944 and 1000000 to get 2944000.
80-\sqrt{6400-\frac{2944000}{7150}}
Multiply 14.3 and 500 to get 7150.
80-\sqrt{6400-\frac{58880}{143}}
Reduce the fraction \frac{2944000}{7150} to lowest terms by extracting and canceling out 50.
80-\sqrt{\frac{915200}{143}-\frac{58880}{143}}
Convert 6400 to fraction \frac{915200}{143}.
80-\sqrt{\frac{915200-58880}{143}}
Since \frac{915200}{143} and \frac{58880}{143} have the same denominator, subtract them by subtracting their numerators.
80-\sqrt{\frac{856320}{143}}
Subtract 58880 from 915200 to get 856320.
80-\frac{\sqrt{856320}}{\sqrt{143}}
Rewrite the square root of the division \sqrt{\frac{856320}{143}} as the division of square roots \frac{\sqrt{856320}}{\sqrt{143}}.
80-\frac{16\sqrt{3345}}{\sqrt{143}}
Factor 856320=16^{2}\times 3345. Rewrite the square root of the product \sqrt{16^{2}\times 3345} as the product of square roots \sqrt{16^{2}}\sqrt{3345}. Take the square root of 16^{2}.
80-\frac{16\sqrt{3345}\sqrt{143}}{\left(\sqrt{143}\right)^{2}}
Rationalize the denominator of \frac{16\sqrt{3345}}{\sqrt{143}} by multiplying numerator and denominator by \sqrt{143}.
80-\frac{16\sqrt{3345}\sqrt{143}}{143}
The square of \sqrt{143} is 143.
80-\frac{16\sqrt{478335}}{143}
To multiply \sqrt{3345} and \sqrt{143}, multiply the numbers under the square root.
\frac{80\times 143}{143}-\frac{16\sqrt{478335}}{143}
To add or subtract expressions, expand them to make their denominators the same. Multiply 80 times \frac{143}{143}.
\frac{80\times 143-16\sqrt{478335}}{143}
Since \frac{80\times 143}{143} and \frac{16\sqrt{478335}}{143} have the same denominator, subtract them by subtracting their numerators.
\frac{11440-16\sqrt{478335}}{143}
Do the multiplications in 80\times 143-16\sqrt{478335}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}