Solve for x (complex solution)
x=2+i
x=2-i
Graph
Share
Copied to clipboard
-16x^{2}+64x=80
Swap sides so that all variable terms are on the left hand side.
-16x^{2}+64x-80=0
Subtract 80 from both sides.
x=\frac{-64±\sqrt{64^{2}-4\left(-16\right)\left(-80\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 64 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-64±\sqrt{4096-4\left(-16\right)\left(-80\right)}}{2\left(-16\right)}
Square 64.
x=\frac{-64±\sqrt{4096+64\left(-80\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-64±\sqrt{4096-5120}}{2\left(-16\right)}
Multiply 64 times -80.
x=\frac{-64±\sqrt{-1024}}{2\left(-16\right)}
Add 4096 to -5120.
x=\frac{-64±32i}{2\left(-16\right)}
Take the square root of -1024.
x=\frac{-64±32i}{-32}
Multiply 2 times -16.
x=\frac{-64+32i}{-32}
Now solve the equation x=\frac{-64±32i}{-32} when ± is plus. Add -64 to 32i.
x=2-i
Divide -64+32i by -32.
x=\frac{-64-32i}{-32}
Now solve the equation x=\frac{-64±32i}{-32} when ± is minus. Subtract 32i from -64.
x=2+i
Divide -64-32i by -32.
x=2-i x=2+i
The equation is now solved.
-16x^{2}+64x=80
Swap sides so that all variable terms are on the left hand side.
\frac{-16x^{2}+64x}{-16}=\frac{80}{-16}
Divide both sides by -16.
x^{2}+\frac{64}{-16}x=\frac{80}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-4x=\frac{80}{-16}
Divide 64 by -16.
x^{2}-4x=-5
Divide 80 by -16.
x^{2}-4x+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-5+4
Square -2.
x^{2}-4x+4=-1
Add -5 to 4.
\left(x-2\right)^{2}=-1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-2=i x-2=-i
Simplify.
x=2+i x=2-i
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}