Solve for x
x=2\sqrt{2}+4\approx 6.828427125
x=4-2\sqrt{2}\approx 1.171572875
Graph
Share
Copied to clipboard
-10x^{2}+80x=80
Swap sides so that all variable terms are on the left hand side.
-10x^{2}+80x-80=0
Subtract 80 from both sides.
x=\frac{-80±\sqrt{80^{2}-4\left(-10\right)\left(-80\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 80 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-10\right)\left(-80\right)}}{2\left(-10\right)}
Square 80.
x=\frac{-80±\sqrt{6400+40\left(-80\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-80±\sqrt{6400-3200}}{2\left(-10\right)}
Multiply 40 times -80.
x=\frac{-80±\sqrt{3200}}{2\left(-10\right)}
Add 6400 to -3200.
x=\frac{-80±40\sqrt{2}}{2\left(-10\right)}
Take the square root of 3200.
x=\frac{-80±40\sqrt{2}}{-20}
Multiply 2 times -10.
x=\frac{40\sqrt{2}-80}{-20}
Now solve the equation x=\frac{-80±40\sqrt{2}}{-20} when ± is plus. Add -80 to 40\sqrt{2}.
x=4-2\sqrt{2}
Divide -80+40\sqrt{2} by -20.
x=\frac{-40\sqrt{2}-80}{-20}
Now solve the equation x=\frac{-80±40\sqrt{2}}{-20} when ± is minus. Subtract 40\sqrt{2} from -80.
x=2\sqrt{2}+4
Divide -80-40\sqrt{2} by -20.
x=4-2\sqrt{2} x=2\sqrt{2}+4
The equation is now solved.
-10x^{2}+80x=80
Swap sides so that all variable terms are on the left hand side.
\frac{-10x^{2}+80x}{-10}=\frac{80}{-10}
Divide both sides by -10.
x^{2}+\frac{80}{-10}x=\frac{80}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-8x=\frac{80}{-10}
Divide 80 by -10.
x^{2}-8x=-8
Divide 80 by -10.
x^{2}-8x+\left(-4\right)^{2}=-8+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-8+16
Square -4.
x^{2}-8x+16=8
Add -8 to 16.
\left(x-4\right)^{2}=8
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
x-4=2\sqrt{2} x-4=-2\sqrt{2}
Simplify.
x=2\sqrt{2}+4 x=4-2\sqrt{2}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}