Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10x^{2}+80x=80
Swap sides so that all variable terms are on the left hand side.
-10x^{2}+80x-80=0
Subtract 80 from both sides.
x=\frac{-80±\sqrt{80^{2}-4\left(-10\right)\left(-80\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 80 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-10\right)\left(-80\right)}}{2\left(-10\right)}
Square 80.
x=\frac{-80±\sqrt{6400+40\left(-80\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-80±\sqrt{6400-3200}}{2\left(-10\right)}
Multiply 40 times -80.
x=\frac{-80±\sqrt{3200}}{2\left(-10\right)}
Add 6400 to -3200.
x=\frac{-80±40\sqrt{2}}{2\left(-10\right)}
Take the square root of 3200.
x=\frac{-80±40\sqrt{2}}{-20}
Multiply 2 times -10.
x=\frac{40\sqrt{2}-80}{-20}
Now solve the equation x=\frac{-80±40\sqrt{2}}{-20} when ± is plus. Add -80 to 40\sqrt{2}.
x=4-2\sqrt{2}
Divide -80+40\sqrt{2} by -20.
x=\frac{-40\sqrt{2}-80}{-20}
Now solve the equation x=\frac{-80±40\sqrt{2}}{-20} when ± is minus. Subtract 40\sqrt{2} from -80.
x=2\sqrt{2}+4
Divide -80-40\sqrt{2} by -20.
x=4-2\sqrt{2} x=2\sqrt{2}+4
The equation is now solved.
-10x^{2}+80x=80
Swap sides so that all variable terms are on the left hand side.
\frac{-10x^{2}+80x}{-10}=\frac{80}{-10}
Divide both sides by -10.
x^{2}+\frac{80}{-10}x=\frac{80}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-8x=\frac{80}{-10}
Divide 80 by -10.
x^{2}-8x=-8
Divide 80 by -10.
x^{2}-8x+\left(-4\right)^{2}=-8+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-8+16
Square -4.
x^{2}-8x+16=8
Add -8 to 16.
\left(x-4\right)^{2}=8
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
x-4=2\sqrt{2} x-4=-2\sqrt{2}
Simplify.
x=2\sqrt{2}+4 x=4-2\sqrt{2}
Add 4 to both sides of the equation.