Solve for x
x = \frac{99087}{4006} = 24\frac{2943}{4006} \approx 24.734648028
Graph
Share
Copied to clipboard
80x-1800+\frac{3}{25}\left(x-14.5\right)=180
Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
80x-1800+\frac{3}{25}x+\frac{3}{25}\left(-14.5\right)=180
Use the distributive property to multiply \frac{3}{25} by x-14.5.
80x-1800+\frac{3}{25}x+\frac{3}{25}\left(-\frac{29}{2}\right)=180
Convert decimal number -14.5 to fraction -\frac{145}{10}. Reduce the fraction -\frac{145}{10} to lowest terms by extracting and canceling out 5.
80x-1800+\frac{3}{25}x+\frac{3\left(-29\right)}{25\times 2}=180
Multiply \frac{3}{25} times -\frac{29}{2} by multiplying numerator times numerator and denominator times denominator.
80x-1800+\frac{3}{25}x+\frac{-87}{50}=180
Do the multiplications in the fraction \frac{3\left(-29\right)}{25\times 2}.
80x-1800+\frac{3}{25}x-\frac{87}{50}=180
Fraction \frac{-87}{50} can be rewritten as -\frac{87}{50} by extracting the negative sign.
\frac{2003}{25}x-1800-\frac{87}{50}=180
Combine 80x and \frac{3}{25}x to get \frac{2003}{25}x.
\frac{2003}{25}x-\frac{90000}{50}-\frac{87}{50}=180
Convert -1800 to fraction -\frac{90000}{50}.
\frac{2003}{25}x+\frac{-90000-87}{50}=180
Since -\frac{90000}{50} and \frac{87}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{2003}{25}x-\frac{90087}{50}=180
Subtract 87 from -90000 to get -90087.
\frac{2003}{25}x=180+\frac{90087}{50}
Add \frac{90087}{50} to both sides.
\frac{2003}{25}x=\frac{9000}{50}+\frac{90087}{50}
Convert 180 to fraction \frac{9000}{50}.
\frac{2003}{25}x=\frac{9000+90087}{50}
Since \frac{9000}{50} and \frac{90087}{50} have the same denominator, add them by adding their numerators.
\frac{2003}{25}x=\frac{99087}{50}
Add 9000 and 90087 to get 99087.
x=\frac{99087}{50}\times \frac{25}{2003}
Multiply both sides by \frac{25}{2003}, the reciprocal of \frac{2003}{25}.
x=\frac{99087\times 25}{50\times 2003}
Multiply \frac{99087}{50} times \frac{25}{2003} by multiplying numerator times numerator and denominator times denominator.
x=\frac{2477175}{100150}
Do the multiplications in the fraction \frac{99087\times 25}{50\times 2003}.
x=\frac{99087}{4006}
Reduce the fraction \frac{2477175}{100150} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}