Evaluate
63y^{2}-284y+305
Factor
63\left(y-\frac{142-\sqrt{949}}{63}\right)\left(y-\frac{\sqrt{949}+142}{63}\right)
Graph
Share
Copied to clipboard
63y^{2}-360y+4y+72y+405-19-81
Combine 80y^{2} and -17y^{2} to get 63y^{2}.
63y^{2}-356y+72y+405-19-81
Combine -360y and 4y to get -356y.
63y^{2}-284y+405-19-81
Combine -356y and 72y to get -284y.
63y^{2}-284y+386-81
Subtract 19 from 405 to get 386.
63y^{2}-284y+305
Subtract 81 from 386 to get 305.
factor(63y^{2}-360y+4y+72y+405-19-81)
Combine 80y^{2} and -17y^{2} to get 63y^{2}.
factor(63y^{2}-356y+72y+405-19-81)
Combine -360y and 4y to get -356y.
factor(63y^{2}-284y+405-19-81)
Combine -356y and 72y to get -284y.
factor(63y^{2}-284y+386-81)
Subtract 19 from 405 to get 386.
factor(63y^{2}-284y+305)
Subtract 81 from 386 to get 305.
63y^{2}-284y+305=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-284\right)±\sqrt{\left(-284\right)^{2}-4\times 63\times 305}}{2\times 63}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-284\right)±\sqrt{80656-4\times 63\times 305}}{2\times 63}
Square -284.
y=\frac{-\left(-284\right)±\sqrt{80656-252\times 305}}{2\times 63}
Multiply -4 times 63.
y=\frac{-\left(-284\right)±\sqrt{80656-76860}}{2\times 63}
Multiply -252 times 305.
y=\frac{-\left(-284\right)±\sqrt{3796}}{2\times 63}
Add 80656 to -76860.
y=\frac{-\left(-284\right)±2\sqrt{949}}{2\times 63}
Take the square root of 3796.
y=\frac{284±2\sqrt{949}}{2\times 63}
The opposite of -284 is 284.
y=\frac{284±2\sqrt{949}}{126}
Multiply 2 times 63.
y=\frac{2\sqrt{949}+284}{126}
Now solve the equation y=\frac{284±2\sqrt{949}}{126} when ± is plus. Add 284 to 2\sqrt{949}.
y=\frac{\sqrt{949}+142}{63}
Divide 284+2\sqrt{949} by 126.
y=\frac{284-2\sqrt{949}}{126}
Now solve the equation y=\frac{284±2\sqrt{949}}{126} when ± is minus. Subtract 2\sqrt{949} from 284.
y=\frac{142-\sqrt{949}}{63}
Divide 284-2\sqrt{949} by 126.
63y^{2}-284y+305=63\left(y-\frac{\sqrt{949}+142}{63}\right)\left(y-\frac{142-\sqrt{949}}{63}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{142+\sqrt{949}}{63} for x_{1} and \frac{142-\sqrt{949}}{63} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}