Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

80x^{2}+96x-1400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-96±\sqrt{96^{2}-4\times 80\left(-1400\right)}}{2\times 80}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 80 for a, 96 for b, and -1400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-96±\sqrt{9216-4\times 80\left(-1400\right)}}{2\times 80}
Square 96.
x=\frac{-96±\sqrt{9216-320\left(-1400\right)}}{2\times 80}
Multiply -4 times 80.
x=\frac{-96±\sqrt{9216+448000}}{2\times 80}
Multiply -320 times -1400.
x=\frac{-96±\sqrt{457216}}{2\times 80}
Add 9216 to 448000.
x=\frac{-96±16\sqrt{1786}}{2\times 80}
Take the square root of 457216.
x=\frac{-96±16\sqrt{1786}}{160}
Multiply 2 times 80.
x=\frac{16\sqrt{1786}-96}{160}
Now solve the equation x=\frac{-96±16\sqrt{1786}}{160} when ± is plus. Add -96 to 16\sqrt{1786}.
x=\frac{\sqrt{1786}}{10}-\frac{3}{5}
Divide -96+16\sqrt{1786} by 160.
x=\frac{-16\sqrt{1786}-96}{160}
Now solve the equation x=\frac{-96±16\sqrt{1786}}{160} when ± is minus. Subtract 16\sqrt{1786} from -96.
x=-\frac{\sqrt{1786}}{10}-\frac{3}{5}
Divide -96-16\sqrt{1786} by 160.
x=\frac{\sqrt{1786}}{10}-\frac{3}{5} x=-\frac{\sqrt{1786}}{10}-\frac{3}{5}
The equation is now solved.
80x^{2}+96x-1400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
80x^{2}+96x-1400-\left(-1400\right)=-\left(-1400\right)
Add 1400 to both sides of the equation.
80x^{2}+96x=-\left(-1400\right)
Subtracting -1400 from itself leaves 0.
80x^{2}+96x=1400
Subtract -1400 from 0.
\frac{80x^{2}+96x}{80}=\frac{1400}{80}
Divide both sides by 80.
x^{2}+\frac{96}{80}x=\frac{1400}{80}
Dividing by 80 undoes the multiplication by 80.
x^{2}+\frac{6}{5}x=\frac{1400}{80}
Reduce the fraction \frac{96}{80} to lowest terms by extracting and canceling out 16.
x^{2}+\frac{6}{5}x=\frac{35}{2}
Reduce the fraction \frac{1400}{80} to lowest terms by extracting and canceling out 40.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{35}{2}+\left(\frac{3}{5}\right)^{2}
Divide \frac{6}{5}, the coefficient of the x term, by 2 to get \frac{3}{5}. Then add the square of \frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{35}{2}+\frac{9}{25}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{893}{50}
Add \frac{35}{2} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{5}\right)^{2}=\frac{893}{50}
Factor x^{2}+\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{893}{50}}
Take the square root of both sides of the equation.
x+\frac{3}{5}=\frac{\sqrt{1786}}{10} x+\frac{3}{5}=-\frac{\sqrt{1786}}{10}
Simplify.
x=\frac{\sqrt{1786}}{10}-\frac{3}{5} x=-\frac{\sqrt{1786}}{10}-\frac{3}{5}
Subtract \frac{3}{5} from both sides of the equation.