Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4080=\left(80+x\right)\left(53-x\right)
Multiply 80 and 51 to get 4080.
4080=4240-27x-x^{2}
Use the distributive property to multiply 80+x by 53-x and combine like terms.
4240-27x-x^{2}=4080
Swap sides so that all variable terms are on the left hand side.
4240-27x-x^{2}-4080=0
Subtract 4080 from both sides.
160-27x-x^{2}=0
Subtract 4080 from 4240 to get 160.
-x^{2}-27x+160=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\left(-1\right)\times 160}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -27 for b, and 160 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±\sqrt{729-4\left(-1\right)\times 160}}{2\left(-1\right)}
Square -27.
x=\frac{-\left(-27\right)±\sqrt{729+4\times 160}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-27\right)±\sqrt{729+640}}{2\left(-1\right)}
Multiply 4 times 160.
x=\frac{-\left(-27\right)±\sqrt{1369}}{2\left(-1\right)}
Add 729 to 640.
x=\frac{-\left(-27\right)±37}{2\left(-1\right)}
Take the square root of 1369.
x=\frac{27±37}{2\left(-1\right)}
The opposite of -27 is 27.
x=\frac{27±37}{-2}
Multiply 2 times -1.
x=\frac{64}{-2}
Now solve the equation x=\frac{27±37}{-2} when ± is plus. Add 27 to 37.
x=-32
Divide 64 by -2.
x=-\frac{10}{-2}
Now solve the equation x=\frac{27±37}{-2} when ± is minus. Subtract 37 from 27.
x=5
Divide -10 by -2.
x=-32 x=5
The equation is now solved.
4080=\left(80+x\right)\left(53-x\right)
Multiply 80 and 51 to get 4080.
4080=4240-27x-x^{2}
Use the distributive property to multiply 80+x by 53-x and combine like terms.
4240-27x-x^{2}=4080
Swap sides so that all variable terms are on the left hand side.
-27x-x^{2}=4080-4240
Subtract 4240 from both sides.
-27x-x^{2}=-160
Subtract 4240 from 4080 to get -160.
-x^{2}-27x=-160
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-27x}{-1}=-\frac{160}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{27}{-1}\right)x=-\frac{160}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+27x=-\frac{160}{-1}
Divide -27 by -1.
x^{2}+27x=160
Divide -160 by -1.
x^{2}+27x+\left(\frac{27}{2}\right)^{2}=160+\left(\frac{27}{2}\right)^{2}
Divide 27, the coefficient of the x term, by 2 to get \frac{27}{2}. Then add the square of \frac{27}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+27x+\frac{729}{4}=160+\frac{729}{4}
Square \frac{27}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+27x+\frac{729}{4}=\frac{1369}{4}
Add 160 to \frac{729}{4}.
\left(x+\frac{27}{2}\right)^{2}=\frac{1369}{4}
Factor x^{2}+27x+\frac{729}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{27}{2}\right)^{2}}=\sqrt{\frac{1369}{4}}
Take the square root of both sides of the equation.
x+\frac{27}{2}=\frac{37}{2} x+\frac{27}{2}=-\frac{37}{2}
Simplify.
x=5 x=-32
Subtract \frac{27}{2} from both sides of the equation.