Solve for x
x=5\sqrt{17}-20\approx 0.615528128
x=-5\sqrt{17}-20\approx -40.615528128
Graph
Share
Copied to clipboard
1600=\left(65+x\right)\left(25-x\right)
Multiply 80 and 20 to get 1600.
1600=1625-40x-x^{2}
Use the distributive property to multiply 65+x by 25-x and combine like terms.
1625-40x-x^{2}=1600
Swap sides so that all variable terms are on the left hand side.
1625-40x-x^{2}-1600=0
Subtract 1600 from both sides.
25-40x-x^{2}=0
Subtract 1600 from 1625 to get 25.
-x^{2}-40x+25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\left(-1\right)\times 25}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -40 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\left(-1\right)\times 25}}{2\left(-1\right)}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600+4\times 25}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-40\right)±\sqrt{1600+100}}{2\left(-1\right)}
Multiply 4 times 25.
x=\frac{-\left(-40\right)±\sqrt{1700}}{2\left(-1\right)}
Add 1600 to 100.
x=\frac{-\left(-40\right)±10\sqrt{17}}{2\left(-1\right)}
Take the square root of 1700.
x=\frac{40±10\sqrt{17}}{2\left(-1\right)}
The opposite of -40 is 40.
x=\frac{40±10\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{10\sqrt{17}+40}{-2}
Now solve the equation x=\frac{40±10\sqrt{17}}{-2} when ± is plus. Add 40 to 10\sqrt{17}.
x=-5\sqrt{17}-20
Divide 40+10\sqrt{17} by -2.
x=\frac{40-10\sqrt{17}}{-2}
Now solve the equation x=\frac{40±10\sqrt{17}}{-2} when ± is minus. Subtract 10\sqrt{17} from 40.
x=5\sqrt{17}-20
Divide 40-10\sqrt{17} by -2.
x=-5\sqrt{17}-20 x=5\sqrt{17}-20
The equation is now solved.
1600=\left(65+x\right)\left(25-x\right)
Multiply 80 and 20 to get 1600.
1600=1625-40x-x^{2}
Use the distributive property to multiply 65+x by 25-x and combine like terms.
1625-40x-x^{2}=1600
Swap sides so that all variable terms are on the left hand side.
-40x-x^{2}=1600-1625
Subtract 1625 from both sides.
-40x-x^{2}=-25
Subtract 1625 from 1600 to get -25.
-x^{2}-40x=-25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-40x}{-1}=-\frac{25}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{40}{-1}\right)x=-\frac{25}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+40x=-\frac{25}{-1}
Divide -40 by -1.
x^{2}+40x=25
Divide -25 by -1.
x^{2}+40x+20^{2}=25+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=25+400
Square 20.
x^{2}+40x+400=425
Add 25 to 400.
\left(x+20\right)^{2}=425
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{425}
Take the square root of both sides of the equation.
x+20=5\sqrt{17} x+20=-5\sqrt{17}
Simplify.
x=5\sqrt{17}-20 x=-5\sqrt{17}-20
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}