Evaluate
\frac{20}{13}\approx 1.538461538
Factor
\frac{2 ^ {2} \cdot 5}{13} = 1\frac{7}{13} = 1.5384615384615385
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)80}\\\end{array}
Use the 1^{st} digit 8 from dividend 80
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)80}\\\end{array}
Since 8 is less than 52, use the next digit 0 from dividend 80 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)80}\\\end{array}
Use the 2^{nd} digit 0 from dividend 80
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)80}\\\phantom{52)}\underline{\phantom{}52\phantom{}}\\\phantom{52)}28\\\end{array}
Find closest multiple of 52 to 80. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 80 to get reminder 28. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }28
Since 28 is less than 52, stop the division. The reminder is 28. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}