Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8y^{2}+80y+20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-80±\sqrt{80^{2}-4\times 8\times 20}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-80±\sqrt{6400-4\times 8\times 20}}{2\times 8}
Square 80.
y=\frac{-80±\sqrt{6400-32\times 20}}{2\times 8}
Multiply -4 times 8.
y=\frac{-80±\sqrt{6400-640}}{2\times 8}
Multiply -32 times 20.
y=\frac{-80±\sqrt{5760}}{2\times 8}
Add 6400 to -640.
y=\frac{-80±24\sqrt{10}}{2\times 8}
Take the square root of 5760.
y=\frac{-80±24\sqrt{10}}{16}
Multiply 2 times 8.
y=\frac{24\sqrt{10}-80}{16}
Now solve the equation y=\frac{-80±24\sqrt{10}}{16} when ± is plus. Add -80 to 24\sqrt{10}.
y=\frac{3\sqrt{10}}{2}-5
Divide -80+24\sqrt{10} by 16.
y=\frac{-24\sqrt{10}-80}{16}
Now solve the equation y=\frac{-80±24\sqrt{10}}{16} when ± is minus. Subtract 24\sqrt{10} from -80.
y=-\frac{3\sqrt{10}}{2}-5
Divide -80-24\sqrt{10} by 16.
8y^{2}+80y+20=8\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+\frac{3\sqrt{10}}{2} for x_{1} and -5-\frac{3\sqrt{10}}{2} for x_{2}.