Factor
8\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)
Evaluate
8y^{2}+80y+20
Graph
Share
Copied to clipboard
8y^{2}+80y+20=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-80±\sqrt{80^{2}-4\times 8\times 20}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-80±\sqrt{6400-4\times 8\times 20}}{2\times 8}
Square 80.
y=\frac{-80±\sqrt{6400-32\times 20}}{2\times 8}
Multiply -4 times 8.
y=\frac{-80±\sqrt{6400-640}}{2\times 8}
Multiply -32 times 20.
y=\frac{-80±\sqrt{5760}}{2\times 8}
Add 6400 to -640.
y=\frac{-80±24\sqrt{10}}{2\times 8}
Take the square root of 5760.
y=\frac{-80±24\sqrt{10}}{16}
Multiply 2 times 8.
y=\frac{24\sqrt{10}-80}{16}
Now solve the equation y=\frac{-80±24\sqrt{10}}{16} when ± is plus. Add -80 to 24\sqrt{10}.
y=\frac{3\sqrt{10}}{2}-5
Divide -80+24\sqrt{10} by 16.
y=\frac{-24\sqrt{10}-80}{16}
Now solve the equation y=\frac{-80±24\sqrt{10}}{16} when ± is minus. Subtract 24\sqrt{10} from -80.
y=-\frac{3\sqrt{10}}{2}-5
Divide -80-24\sqrt{10} by 16.
8y^{2}+80y+20=8\left(y-\left(\frac{3\sqrt{10}}{2}-5\right)\right)\left(y-\left(-\frac{3\sqrt{10}}{2}-5\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5+\frac{3\sqrt{10}}{2} for x_{1} and -5-\frac{3\sqrt{10}}{2} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}