80 \% \times 0.21 - 60 \% \div 4
Evaluate
0.018
Factor
\frac{3 ^ {2}}{2 ^ {2} \cdot 5 ^ {3}} = 0.018
Share
Copied to clipboard
\frac{4}{5}\times 0.21-\frac{\frac{60}{100}}{4}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{4}{5}\times \frac{21}{100}-\frac{\frac{60}{100}}{4}
Convert decimal number 0.21 to fraction \frac{21}{100}.
\frac{4\times 21}{5\times 100}-\frac{\frac{60}{100}}{4}
Multiply \frac{4}{5} times \frac{21}{100} by multiplying numerator times numerator and denominator times denominator.
\frac{84}{500}-\frac{\frac{60}{100}}{4}
Do the multiplications in the fraction \frac{4\times 21}{5\times 100}.
\frac{21}{125}-\frac{\frac{60}{100}}{4}
Reduce the fraction \frac{84}{500} to lowest terms by extracting and canceling out 4.
\frac{21}{125}-\frac{60}{100\times 4}
Express \frac{\frac{60}{100}}{4} as a single fraction.
\frac{21}{125}-\frac{60}{400}
Multiply 100 and 4 to get 400.
\frac{21}{125}-\frac{3}{20}
Reduce the fraction \frac{60}{400} to lowest terms by extracting and canceling out 20.
\frac{84}{500}-\frac{75}{500}
Least common multiple of 125 and 20 is 500. Convert \frac{21}{125} and \frac{3}{20} to fractions with denominator 500.
\frac{84-75}{500}
Since \frac{84}{500} and \frac{75}{500} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{500}
Subtract 75 from 84 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}