Skip to main content
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

80\times 4=\pi D^{2}
Multiply both sides by 4.
320=\pi D^{2}
Multiply 80 and 4 to get 320.
\pi D^{2}=320
Swap sides so that all variable terms are on the left hand side.
\frac{\pi D^{2}}{\pi }=\frac{320}{\pi }
Divide both sides by \pi .
D^{2}=\frac{320}{\pi }
Dividing by \pi undoes the multiplication by \pi .
D=\frac{40}{\sqrt{5\pi }} D=-\frac{40}{\sqrt{5\pi }}
Take the square root of both sides of the equation.
80\times 4=\pi D^{2}
Multiply both sides by 4.
320=\pi D^{2}
Multiply 80 and 4 to get 320.
\pi D^{2}=320
Swap sides so that all variable terms are on the left hand side.
\pi D^{2}-320=0
Subtract 320 from both sides.
D=\frac{0±\sqrt{0^{2}-4\pi \left(-320\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -320 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{0±\sqrt{-4\pi \left(-320\right)}}{2\pi }
Square 0.
D=\frac{0±\sqrt{\left(-4\pi \right)\left(-320\right)}}{2\pi }
Multiply -4 times \pi .
D=\frac{0±\sqrt{1280\pi }}{2\pi }
Multiply -4\pi times -320.
D=\frac{0±16\sqrt{5\pi }}{2\pi }
Take the square root of 1280\pi .
D=\frac{40}{\sqrt{5\pi }}
Now solve the equation D=\frac{0±16\sqrt{5\pi }}{2\pi } when ± is plus.
D=-\frac{40}{\sqrt{5\pi }}
Now solve the equation D=\frac{0±16\sqrt{5\pi }}{2\pi } when ± is minus.
D=\frac{40}{\sqrt{5\pi }} D=-\frac{40}{\sqrt{5\pi }}
The equation is now solved.