Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.0149x^{2}+8.314x-1000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8.314±\sqrt{8.314^{2}-4\times 0.0149\left(-1000\right)}}{2\times 0.0149}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0149 for a, 8.314 for b, and -1000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8.314±\sqrt{69.122596-4\times 0.0149\left(-1000\right)}}{2\times 0.0149}
Square 8.314 by squaring both the numerator and the denominator of the fraction.
x=\frac{-8.314±\sqrt{69.122596-0.0596\left(-1000\right)}}{2\times 0.0149}
Multiply -4 times 0.0149.
x=\frac{-8.314±\sqrt{69.122596+59.6}}{2\times 0.0149}
Multiply -0.0596 times -1000.
x=\frac{-8.314±\sqrt{128.722596}}{2\times 0.0149}
Add 69.122596 to 59.6 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{2\times 0.0149}
Take the square root of 128.722596.
x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{0.0298}
Multiply 2 times 0.0149.
x=\frac{\sqrt{32180649}-4157}{0.0298\times 500}
Now solve the equation x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{0.0298} when ± is plus. Add -8.314 to \frac{\sqrt{32180649}}{500}.
x=\frac{10\sqrt{32180649}-41570}{149}
Divide \frac{-4157+\sqrt{32180649}}{500} by 0.0298 by multiplying \frac{-4157+\sqrt{32180649}}{500} by the reciprocal of 0.0298.
x=\frac{-\sqrt{32180649}-4157}{0.0298\times 500}
Now solve the equation x=\frac{-8.314±\frac{\sqrt{32180649}}{500}}{0.0298} when ± is minus. Subtract \frac{\sqrt{32180649}}{500} from -8.314.
x=\frac{-10\sqrt{32180649}-41570}{149}
Divide \frac{-4157-\sqrt{32180649}}{500} by 0.0298 by multiplying \frac{-4157-\sqrt{32180649}}{500} by the reciprocal of 0.0298.
x=\frac{10\sqrt{32180649}-41570}{149} x=\frac{-10\sqrt{32180649}-41570}{149}
The equation is now solved.
0.0149x^{2}+8.314x-1000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.0149x^{2}+8.314x-1000-\left(-1000\right)=-\left(-1000\right)
Add 1000 to both sides of the equation.
0.0149x^{2}+8.314x=-\left(-1000\right)
Subtracting -1000 from itself leaves 0.
0.0149x^{2}+8.314x=1000
Subtract -1000 from 0.
\frac{0.0149x^{2}+8.314x}{0.0149}=\frac{1000}{0.0149}
Divide both sides of the equation by 0.0149, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{8.314}{0.0149}x=\frac{1000}{0.0149}
Dividing by 0.0149 undoes the multiplication by 0.0149.
x^{2}+\frac{83140}{149}x=\frac{1000}{0.0149}
Divide 8.314 by 0.0149 by multiplying 8.314 by the reciprocal of 0.0149.
x^{2}+\frac{83140}{149}x=\frac{10000000}{149}
Divide 1000 by 0.0149 by multiplying 1000 by the reciprocal of 0.0149.
x^{2}+\frac{83140}{149}x+\frac{41570}{149}^{2}=\frac{10000000}{149}+\frac{41570}{149}^{2}
Divide \frac{83140}{149}, the coefficient of the x term, by 2 to get \frac{41570}{149}. Then add the square of \frac{41570}{149} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{83140}{149}x+\frac{1728064900}{22201}=\frac{10000000}{149}+\frac{1728064900}{22201}
Square \frac{41570}{149} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{83140}{149}x+\frac{1728064900}{22201}=\frac{3218064900}{22201}
Add \frac{10000000}{149} to \frac{1728064900}{22201} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{41570}{149}\right)^{2}=\frac{3218064900}{22201}
Factor x^{2}+\frac{83140}{149}x+\frac{1728064900}{22201}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{41570}{149}\right)^{2}}=\sqrt{\frac{3218064900}{22201}}
Take the square root of both sides of the equation.
x+\frac{41570}{149}=\frac{10\sqrt{32180649}}{149} x+\frac{41570}{149}=-\frac{10\sqrt{32180649}}{149}
Simplify.
x=\frac{10\sqrt{32180649}-41570}{149} x=\frac{-10\sqrt{32180649}-41570}{149}
Subtract \frac{41570}{149} from both sides of the equation.