Solve for x
x = \frac{16}{13} = 1\frac{3}{13} \approx 1.230769231
Graph
Share
Copied to clipboard
8-\left(-x\right)-\left(-2\right)=5x-\left(6-9x\right)
To find the opposite of -x-2, find the opposite of each term.
8-\left(-x\right)+2=5x-\left(6-9x\right)
The opposite of -2 is 2.
10-\left(-x\right)=5x-\left(6-9x\right)
Add 8 and 2 to get 10.
10-\left(-x\right)=5x-6-\left(-9x\right)
To find the opposite of 6-9x, find the opposite of each term.
10-\left(-x\right)=5x-6+9x
The opposite of -9x is 9x.
10-\left(-x\right)=14x-6
Combine 5x and 9x to get 14x.
10-\left(-x\right)-14x=-6
Subtract 14x from both sides.
-\left(-x\right)-14x=-6-10
Subtract 10 from both sides.
-\left(-x\right)-14x=-16
Subtract 10 from -6 to get -16.
x-14x=-16
Multiply -1 and -1 to get 1.
-13x=-16
Combine x and -14x to get -13x.
x=\frac{-16}{-13}
Divide both sides by -13.
x=\frac{16}{13}
Fraction \frac{-16}{-13} can be simplified to \frac{16}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}