Evaluate
\frac{21}{2}=10.5
Factor
\frac{3 \cdot 7}{2} = 10\frac{1}{2} = 10.5
Share
Copied to clipboard
8-\left(-\frac{4+1}{2}\right)
Multiply 2 and 2 to get 4.
8-\left(-\frac{5}{2}\right)
Add 4 and 1 to get 5.
8+\frac{5}{2}
The opposite of -\frac{5}{2} is \frac{5}{2}.
\frac{16}{2}+\frac{5}{2}
Convert 8 to fraction \frac{16}{2}.
\frac{16+5}{2}
Since \frac{16}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{21}{2}
Add 16 and 5 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}