Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18-x^{2}-2\left(x+1\right)^{2}=0
Add 8 and 10 to get 18.
18-x^{2}-2\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
18-x^{2}-2x^{2}-4x-2=0
Use the distributive property to multiply -2 by x^{2}+2x+1.
18-3x^{2}-4x-2=0
Combine -x^{2} and -2x^{2} to get -3x^{2}.
16-3x^{2}-4x=0
Subtract 2 from 18 to get 16.
-3x^{2}-4x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-3\right)\times 16}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -4 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-3\right)\times 16}}{2\left(-3\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+12\times 16}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-4\right)±\sqrt{16+192}}{2\left(-3\right)}
Multiply 12 times 16.
x=\frac{-\left(-4\right)±\sqrt{208}}{2\left(-3\right)}
Add 16 to 192.
x=\frac{-\left(-4\right)±4\sqrt{13}}{2\left(-3\right)}
Take the square root of 208.
x=\frac{4±4\sqrt{13}}{2\left(-3\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{13}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{13}+4}{-6}
Now solve the equation x=\frac{4±4\sqrt{13}}{-6} when ± is plus. Add 4 to 4\sqrt{13}.
x=\frac{-2\sqrt{13}-2}{3}
Divide 4+4\sqrt{13} by -6.
x=\frac{4-4\sqrt{13}}{-6}
Now solve the equation x=\frac{4±4\sqrt{13}}{-6} when ± is minus. Subtract 4\sqrt{13} from 4.
x=\frac{2\sqrt{13}-2}{3}
Divide 4-4\sqrt{13} by -6.
x=\frac{-2\sqrt{13}-2}{3} x=\frac{2\sqrt{13}-2}{3}
The equation is now solved.
18-x^{2}-2\left(x+1\right)^{2}=0
Add 8 and 10 to get 18.
18-x^{2}-2\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
18-x^{2}-2x^{2}-4x-2=0
Use the distributive property to multiply -2 by x^{2}+2x+1.
18-3x^{2}-4x-2=0
Combine -x^{2} and -2x^{2} to get -3x^{2}.
16-3x^{2}-4x=0
Subtract 2 from 18 to get 16.
-3x^{2}-4x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{-3x^{2}-4x}{-3}=-\frac{16}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{4}{-3}\right)x=-\frac{16}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{4}{3}x=-\frac{16}{-3}
Divide -4 by -3.
x^{2}+\frac{4}{3}x=\frac{16}{3}
Divide -16 by -3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\frac{16}{3}+\left(\frac{2}{3}\right)^{2}
Divide \frac{4}{3}, the coefficient of the x term, by 2 to get \frac{2}{3}. Then add the square of \frac{2}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{16}{3}+\frac{4}{9}
Square \frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{52}{9}
Add \frac{16}{3} to \frac{4}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{3}\right)^{2}=\frac{52}{9}
Factor x^{2}+\frac{4}{3}x+\frac{4}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{52}{9}}
Take the square root of both sides of the equation.
x+\frac{2}{3}=\frac{2\sqrt{13}}{3} x+\frac{2}{3}=-\frac{2\sqrt{13}}{3}
Simplify.
x=\frac{2\sqrt{13}-2}{3} x=\frac{-2\sqrt{13}-2}{3}
Subtract \frac{2}{3} from both sides of the equation.