Solve for x (complex solution)
x=1+i
x=1-i
Graph
Share
Copied to clipboard
8+16-16x+4x^{2}+x^{2}=\left(4-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-2x\right)^{2}.
24-16x+4x^{2}+x^{2}=\left(4-x\right)^{2}
Add 8 and 16 to get 24.
24-16x+5x^{2}=\left(4-x\right)^{2}
Combine 4x^{2} and x^{2} to get 5x^{2}.
24-16x+5x^{2}=16-8x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
24-16x+5x^{2}-16=-8x+x^{2}
Subtract 16 from both sides.
8-16x+5x^{2}=-8x+x^{2}
Subtract 16 from 24 to get 8.
8-16x+5x^{2}+8x=x^{2}
Add 8x to both sides.
8-8x+5x^{2}=x^{2}
Combine -16x and 8x to get -8x.
8-8x+5x^{2}-x^{2}=0
Subtract x^{2} from both sides.
8-8x+4x^{2}=0
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-8x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 8}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 8}}{2\times 4}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 8}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{64-128}}{2\times 4}
Multiply -16 times 8.
x=\frac{-\left(-8\right)±\sqrt{-64}}{2\times 4}
Add 64 to -128.
x=\frac{-\left(-8\right)±8i}{2\times 4}
Take the square root of -64.
x=\frac{8±8i}{2\times 4}
The opposite of -8 is 8.
x=\frac{8±8i}{8}
Multiply 2 times 4.
x=\frac{8+8i}{8}
Now solve the equation x=\frac{8±8i}{8} when ± is plus. Add 8 to 8i.
x=1+i
Divide 8+8i by 8.
x=\frac{8-8i}{8}
Now solve the equation x=\frac{8±8i}{8} when ± is minus. Subtract 8i from 8.
x=1-i
Divide 8-8i by 8.
x=1+i x=1-i
The equation is now solved.
8+16-16x+4x^{2}+x^{2}=\left(4-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-2x\right)^{2}.
24-16x+4x^{2}+x^{2}=\left(4-x\right)^{2}
Add 8 and 16 to get 24.
24-16x+5x^{2}=\left(4-x\right)^{2}
Combine 4x^{2} and x^{2} to get 5x^{2}.
24-16x+5x^{2}=16-8x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
24-16x+5x^{2}+8x=16+x^{2}
Add 8x to both sides.
24-8x+5x^{2}=16+x^{2}
Combine -16x and 8x to get -8x.
24-8x+5x^{2}-x^{2}=16
Subtract x^{2} from both sides.
24-8x+4x^{2}=16
Combine 5x^{2} and -x^{2} to get 4x^{2}.
-8x+4x^{2}=16-24
Subtract 24 from both sides.
-8x+4x^{2}=-8
Subtract 24 from 16 to get -8.
4x^{2}-8x=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-8x}{4}=-\frac{8}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2x=-\frac{8}{4}
Divide -8 by 4.
x^{2}-2x=-2
Divide -8 by 4.
x^{2}-2x+1=-2+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-1
Add -2 to 1.
\left(x-1\right)^{2}=-1
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-1=i x-1=-i
Simplify.
x=1+i x=1-i
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}