Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(4z-3-z^{2}\right)
Factor out 2.
-z^{2}+4z-3
Consider 4z-3-z^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=-\left(-3\right)=3
Factor the expression by grouping. First, the expression needs to be rewritten as -z^{2}+az+bz-3. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-z^{2}+3z\right)+\left(z-3\right)
Rewrite -z^{2}+4z-3 as \left(-z^{2}+3z\right)+\left(z-3\right).
-z\left(z-3\right)+z-3
Factor out -z in -z^{2}+3z.
\left(z-3\right)\left(-z+1\right)
Factor out common term z-3 by using distributive property.
2\left(z-3\right)\left(-z+1\right)
Rewrite the complete factored expression.
-2z^{2}+8z-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
z=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-8±\sqrt{64-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
Square 8.
z=\frac{-8±\sqrt{64+8\left(-6\right)}}{2\left(-2\right)}
Multiply -4 times -2.
z=\frac{-8±\sqrt{64-48}}{2\left(-2\right)}
Multiply 8 times -6.
z=\frac{-8±\sqrt{16}}{2\left(-2\right)}
Add 64 to -48.
z=\frac{-8±4}{2\left(-2\right)}
Take the square root of 16.
z=\frac{-8±4}{-4}
Multiply 2 times -2.
z=-\frac{4}{-4}
Now solve the equation z=\frac{-8±4}{-4} when ± is plus. Add -8 to 4.
z=1
Divide -4 by -4.
z=-\frac{12}{-4}
Now solve the equation z=\frac{-8±4}{-4} when ± is minus. Subtract 4 from -8.
z=3
Divide -12 by -4.
-2z^{2}+8z-6=-2\left(z-1\right)\left(z-3\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and 3 for x_{2}.