Evaluate
24y^{3}
Differentiate w.r.t. y
72y^{2}
Share
Copied to clipboard
8^{1}y^{1}x^{-5}\times 3^{1}y^{2}x^{5}
Use the rules of exponents to simplify the expression.
8^{1}\times 3^{1}y^{1}y^{2}x^{-5}x^{5}
Use the Commutative Property of Multiplication.
8^{1}\times 3^{1}y^{1+2}x^{-5+5}
To multiply powers of the same base, add their exponents.
8^{1}\times 3^{1}y^{3}x^{-5+5}
Add the exponents 1 and 2.
8^{1}\times 3^{1}y^{3}x^{0}
Add the exponents -5 and 5.
8^{1}\times 3^{1}y^{3}
For any number a except 0, a^{0}=1.
24y^{3}
Multiply 8 times 3.
\frac{\mathrm{d}}{\mathrm{d}y}(8y^{3}x^{-5}\times 3x^{5})
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\mathrm{d}}{\mathrm{d}y}(8y^{3}\times 3)
Multiply x^{-5} and x^{5} to get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(24y^{3})
Multiply 8 and 3 to get 24.
3\times 24y^{3-1}
The derivative of ax^{n} is nax^{n-1}.
72y^{3-1}
Multiply 3 times 24.
72y^{2}
Subtract 1 from 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}