Factor
y\left(4y-3\right)\left(2y+3\right)
Evaluate
y\left(4y-3\right)\left(2y+3\right)
Graph
Share
Copied to clipboard
y\left(8y^{2}+6y-9\right)
Factor out y.
a+b=6 ab=8\left(-9\right)=-72
Consider 8y^{2}+6y-9. Factor the expression by grouping. First, the expression needs to be rewritten as 8y^{2}+ay+by-9. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=-6 b=12
The solution is the pair that gives sum 6.
\left(8y^{2}-6y\right)+\left(12y-9\right)
Rewrite 8y^{2}+6y-9 as \left(8y^{2}-6y\right)+\left(12y-9\right).
2y\left(4y-3\right)+3\left(4y-3\right)
Factor out 2y in the first and 3 in the second group.
\left(4y-3\right)\left(2y+3\right)
Factor out common term 4y-3 by using distributive property.
y\left(4y-3\right)\left(2y+3\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}