Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

8y^{2}-11y+5-7
Combine -7y and -4y to get -11y.
8y^{2}-11y-2
Subtract 7 from 5 to get -2.
factor(8y^{2}-11y+5-7)
Combine -7y and -4y to get -11y.
factor(8y^{2}-11y-2)
Subtract 7 from 5 to get -2.
8y^{2}-11y-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 8\left(-2\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-11\right)±\sqrt{121-4\times 8\left(-2\right)}}{2\times 8}
Square -11.
y=\frac{-\left(-11\right)±\sqrt{121-32\left(-2\right)}}{2\times 8}
Multiply -4 times 8.
y=\frac{-\left(-11\right)±\sqrt{121+64}}{2\times 8}
Multiply -32 times -2.
y=\frac{-\left(-11\right)±\sqrt{185}}{2\times 8}
Add 121 to 64.
y=\frac{11±\sqrt{185}}{2\times 8}
The opposite of -11 is 11.
y=\frac{11±\sqrt{185}}{16}
Multiply 2 times 8.
y=\frac{\sqrt{185}+11}{16}
Now solve the equation y=\frac{11±\sqrt{185}}{16} when ± is plus. Add 11 to \sqrt{185}.
y=\frac{11-\sqrt{185}}{16}
Now solve the equation y=\frac{11±\sqrt{185}}{16} when ± is minus. Subtract \sqrt{185} from 11.
8y^{2}-11y-2=8\left(y-\frac{\sqrt{185}+11}{16}\right)\left(y-\frac{11-\sqrt{185}}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{185}}{16} for x_{1} and \frac{11-\sqrt{185}}{16} for x_{2}.