Evaluate
\frac{36}{xy^{2}}
Differentiate w.r.t. x
-\frac{36}{\left(xy\right)^{2}}
Share
Copied to clipboard
\frac{\frac{8\times 3x}{-4y^{3}}y^{2}}{-\frac{x^{2}y}{6}}
Express 8\times \frac{3x}{-4y^{3}} as a single fraction.
\frac{\frac{2\times 3x}{-y^{3}}y^{2}}{-\frac{x^{2}y}{6}}
Cancel out 4 in both numerator and denominator.
\frac{\frac{6x}{-y^{3}}y^{2}}{-\frac{x^{2}y}{6}}
Multiply 2 and 3 to get 6.
\frac{\frac{-6x}{y^{3}}y^{2}}{-\frac{x^{2}y}{6}}
Cancel out -1 in both numerator and denominator.
\frac{\frac{-6xy^{2}}{y^{3}}}{-\frac{x^{2}y}{6}}
Express \frac{-6x}{y^{3}}y^{2} as a single fraction.
\frac{\frac{-6x}{y}}{-\frac{x^{2}y}{6}}
Cancel out y^{2} in both numerator and denominator.
\frac{-6x}{y\left(-\frac{x^{2}y}{6}\right)}
Express \frac{\frac{-6x}{y}}{-\frac{x^{2}y}{6}} as a single fraction.
\frac{-6x}{\frac{-yx^{2}y}{6}}
Express y\left(-\frac{x^{2}y}{6}\right) as a single fraction.
\frac{-6x\times 6}{-yx^{2}y}
Divide -6x by \frac{-yx^{2}y}{6} by multiplying -6x by the reciprocal of \frac{-yx^{2}y}{6}.
\frac{-6\times 6}{-xyy}
Cancel out x in both numerator and denominator.
\frac{6\times 6}{xyy}
Cancel out -1 in both numerator and denominator.
\frac{36}{xyy}
Multiply 6 and 6 to get 36.
\frac{36}{xy^{2}}
Multiply y and y to get y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}