Evaluate
16y^{2}
Differentiate w.r.t. y
32y
Share
Copied to clipboard
\frac{8y}{-\frac{1}{2}}\left(-y\right)
Cancel out x in both numerator and denominator.
\frac{8y\times 2}{-1}\left(-y\right)
Divide 8y by -\frac{1}{2} by multiplying 8y by the reciprocal of -\frac{1}{2}.
-8y\times 2\left(-y\right)
Anything divided by -1 gives its opposite.
-16y\left(-y\right)
Multiply -8 and 2 to get -16.
16yy
Multiply -16 and -1 to get 16.
16y^{2}
Multiply y and y to get y^{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8y}{-\frac{1}{2}}\left(-y\right))
Cancel out x in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8y\times 2}{-1}\left(-y\right))
Divide 8y by -\frac{1}{2} by multiplying 8y by the reciprocal of -\frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}y}(-8y\times 2\left(-y\right))
Anything divided by -1 gives its opposite.
\frac{\mathrm{d}}{\mathrm{d}y}(-16y\left(-y\right))
Multiply -8 and 2 to get -16.
\frac{\mathrm{d}}{\mathrm{d}y}(16yy)
Multiply -16 and -1 to get 16.
\frac{\mathrm{d}}{\mathrm{d}y}(16y^{2})
Multiply y and y to get y^{2}.
2\times 16y^{2-1}
The derivative of ax^{n} is nax^{n-1}.
32y^{2-1}
Multiply 2 times 16.
32y^{1}
Subtract 1 from 2.
32y
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}