Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+8x-15
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-\left(-15\right)=15
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=5 b=3
The solution is the pair that gives sum 8.
\left(-x^{2}+5x\right)+\left(3x-15\right)
Rewrite -x^{2}+8x-15 as \left(-x^{2}+5x\right)+\left(3x-15\right).
-x\left(x-5\right)+3\left(x-5\right)
Factor out -x in the first and 3 in the second group.
\left(x-5\right)\left(-x+3\right)
Factor out common term x-5 by using distributive property.
-x^{2}+8x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-15\right)}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\left(-15\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64-60}}{2\left(-1\right)}
Multiply 4 times -15.
x=\frac{-8±\sqrt{4}}{2\left(-1\right)}
Add 64 to -60.
x=\frac{-8±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{-8±2}{-2}
Multiply 2 times -1.
x=-\frac{6}{-2}
Now solve the equation x=\frac{-8±2}{-2} when ± is plus. Add -8 to 2.
x=3
Divide -6 by -2.
x=-\frac{10}{-2}
Now solve the equation x=\frac{-8±2}{-2} when ± is minus. Subtract 2 from -8.
x=5
Divide -10 by -2.
-x^{2}+8x-15=-\left(x-3\right)\left(x-5\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and 5 for x_{2}.