Solve for x
x=\frac{\sqrt{14}}{2}+2\approx 3.870828693
x=-\frac{\sqrt{14}}{2}+2\approx 0.129171307
Graph
Share
Copied to clipboard
-2x^{2}+8x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-2x^{2}+8x-1=1-1
Subtract 1 from both sides of the equation.
-2x^{2}+8x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 8 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-1\right)}}{2\left(-2\right)}
Square 8.
x=\frac{-8±\sqrt{64+8\left(-1\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-8±\sqrt{64-8}}{2\left(-2\right)}
Multiply 8 times -1.
x=\frac{-8±\sqrt{56}}{2\left(-2\right)}
Add 64 to -8.
x=\frac{-8±2\sqrt{14}}{2\left(-2\right)}
Take the square root of 56.
x=\frac{-8±2\sqrt{14}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{14}-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{14}}{-4} when ± is plus. Add -8 to 2\sqrt{14}.
x=-\frac{\sqrt{14}}{2}+2
Divide -8+2\sqrt{14} by -4.
x=\frac{-2\sqrt{14}-8}{-4}
Now solve the equation x=\frac{-8±2\sqrt{14}}{-4} when ± is minus. Subtract 2\sqrt{14} from -8.
x=\frac{\sqrt{14}}{2}+2
Divide -8-2\sqrt{14} by -4.
x=-\frac{\sqrt{14}}{2}+2 x=\frac{\sqrt{14}}{2}+2
The equation is now solved.
-2x^{2}+8x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+8x}{-2}=\frac{1}{-2}
Divide both sides by -2.
x^{2}+\frac{8}{-2}x=\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-4x=\frac{1}{-2}
Divide 8 by -2.
x^{2}-4x=-\frac{1}{2}
Divide 1 by -2.
x^{2}-4x+\left(-2\right)^{2}=-\frac{1}{2}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{1}{2}+4
Square -2.
x^{2}-4x+4=\frac{7}{2}
Add -\frac{1}{2} to 4.
\left(x-2\right)^{2}=\frac{7}{2}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{7}{2}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{14}}{2} x-2=-\frac{\sqrt{14}}{2}
Simplify.
x=\frac{\sqrt{14}}{2}+2 x=-\frac{\sqrt{14}}{2}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}