Solve for x
x\leq \frac{4}{27}
Graph
Share
Copied to clipboard
24x-\left(1-3x\right)\leq 3
Multiply both sides of the equation by 3. Since 3 is positive, the inequality direction remains the same.
24x-1-\left(-3x\right)\leq 3
To find the opposite of 1-3x, find the opposite of each term.
24x-1+3x\leq 3
The opposite of -3x is 3x.
27x-1\leq 3
Combine 24x and 3x to get 27x.
27x\leq 3+1
Add 1 to both sides.
27x\leq 4
Add 3 and 1 to get 4.
x\leq \frac{4}{27}
Divide both sides by 27. Since 27 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}